Browsing by Author "Jonker A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGenomic insights into the physiology of Quinella, an iconic uncultured rumen bacterium.(Nature Portfolio, 2022-10-20) Kumar S; Altermann E; Leahy SC; Jauregui R; Jonker A; Henderson G; Kittelmann S; Attwood GT; Kamke J; Waters SM; Patchett ML; Janssen PHQuinella is a genus of iconic rumen bacteria first reported in 1913. There are no cultures of these bacteria, and information on their physiology is scarce and contradictory. Increased abundance of Quinella was previously found in the rumens of some sheep that emit low amounts of methane (CH4) relative to their feed intake, but whether Quinella contributes to low CH4 emissions is not known. Here, we concentrate Quinella cells from sheep rumen contents, extract and sequence DNA, and reconstruct Quinella genomes that are >90% complete with as little as 0.20% contamination. Bioinformatic analyses of the encoded proteins indicate that lactate and propionate formation are major fermentation pathways. The presence of a gene encoding a potential uptake hydrogenase suggests that Quinella might be able to use free hydrogen (H2). None of the inferred metabolic pathways is predicted to produce H2, a major precursor of CH4, which is consistent with the lower CH4 emissions from those sheep with high abundances of this bacterium.
- ItemMethane emissions intensity in grazing dairy cows fed graded levels of concentrate pellets(Taylor and Francis Group, 2024-05-03) Bosher T; Della Rosa MM; Khan MA; Sneddon N; Donaghy D; Jonker A; Corner-Thomas R; Handcock R; Sneddon NThe current New Zealand greenhouse gas inventory predictions assume that dairy cows consume pasture only, but the use of supplemental feeds, including concentrates, on New Zealand dairy farms has increased greatly in recent decades. The objective of this study was to evaluate the effect of feeding graded levels of concentrates on methane (CH4) emissions in lactating dairy cows within a pastoral system. Early lactation dairy cows (n = 72) were allocated (n = 18 per treatment) to receive 0, 2, 4 and 6 kg dry matter (DM) of treatment concentrates per day during milking. The cows grazed pasture ad libitum and CH4 emissions were measured in the paddocks using automated emissions monitoring systems called ‘GreenFeed’. Gross CH4 emissions (g/d) were similar for cows across the four dietary treatments, while CH4 emissions intensity (g/kg fat and protein corrected milk production (FPCM) and milk solids production) linearly decreased with increasing concentrate inclusion in the diet (P < 0.02). The CH4 intensity decreased linearly (r2 = 0.42) and quadratically (r2 = 0.53) with increasing FPCM production.