Browsing by Author "Johnson T"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGas adsorption in the topologically disordered Fe-BTC framework(Royal Society of Chemistry, 2021-11-19) Sapnik AF; Ashling CW; Macreadie LK; Lee SJ; Johnson T; Telfer SG; Bennett TDDisordered metal-organic frameworks are emerging as an attractive class of functional materials, however their applications in gas storage and separation have yet to be fully explored. Here, we investigate gas adsorption in the topologically disordered Fe-BTC framework and its crystalline counterpart, MIL-100. Despite their similar chemistry and local structure, they exhibit very different sorption behaviour towards a range gases. Virial analysis reveals that Fe-BTC has enhanced interaction strength with guest molecules compared to MIL-100. Most notably, we observe striking discrimination between the adsorption of C3H6 and C3H8 in Fe-BTC, with over a twofold increase in the amount of C3H6 being adsorbed than C3H8. Thermodynamic selectivity towards a range of industrially relevant binary mixtures is probed using ideal adsorbed solution theory. Together, this suggests the disordered material may possess powerful separation capabilities that are rare even amongst crystalline frameworks.
- ItemIdentification of candidate novel production variants on the Bos taurus chromosome X(Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association, 2023-11) Trebes H; Wang Y; Reynolds E; Tiplady K; Harland C; Lopdell T; Johnson T; Davis S; Harris B; Spelman R; Couldrey CChromosome X is often excluded from bovine genetic studies due to complications caused by the sex specific nature of the chromosome. As chromosome X is the second largest cattle chromosome and makes up approximately 6% of the female genome, finding ways to include chromosome X in dairy genetic studies is important. Using female animals and treating chromosome X as an autosome, we performed X chromosome inclusive genome-wide association studies in the selective breeding environment of the New Zealand dairy industry, aiming to identify chromosome X variants associated with milk production traits. We report on the findings of these genome-wide association studies and their potential effect within the dairy industry. We identify missense mutations in the MOSPD1 and CCDC160 genes that are associated with decreased milk volume and protein production and increased fat production. Both of these mutations are exonic SNP that are more prevalent in the Jersey breed than in Holstein-Friesians. Of the 2 candidates proposed it is likely that only one is causal, though we have not been able to identify which is more likely.