Browsing by Author "Ji W"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemAn improved method for monitoring multiscale plant species diversity of alpine grassland using UAVs: A case study in the source region of the Yellow River, China(Frontiers Media, 9/06/2022) Sun Y; Yuan Y; Luo Y; Ji W; Bian Q; Zhu Z; Wang J; Qin Y; He XZ; Li M; Yi SPlant species diversity (PSD) is essential in evaluating the function and developing the management and conservation strategies of grassland. However, over a large region, an efficient and high precision method to monitor multiscale PSD (α-, β-, and γ-diversity) is lacking. In this study, we proposed and improved an unmanned aerial vehicle (UAV)-based PSD monitoring method (UAVB) and tested the feasibility, and meanwhile, explored the potential relationship between multiscale PSD and precipitation on the alpine grassland of the source region of the Yellow River (SRYR), China. Our findings showed that: (1) UAVB was more representative (larger monitoring areas and more species identified with higher α- and γ-diversity) than the traditional ground-based monitoring method, though a few specific species (small in size) were difficult to identify; (2) UAVB is suitable for monitoring the multiscale PSD over a large region (the SRYR in this study), and the improvement by weighing the dominance of species improved the precision of α-diversity (higher R 2 and lower P values of the linear regressions); and (3) the species diversity indices (α- and β-diversity) increased first and then they tended to be stable with the increase of precipitation in SRYR. These findings conclude that UAVB is suitable for monitoring multiscale PSD of an alpine grassland community over a large region, which will be useful for revealing the relationship of diversity-function, and helpful for conservation and sustainable management of the alpine grassland.
- ItemAnthropogenic mortality of large mammals and trends of conflict over two decades in Nepal(John Wiley and Sons Ltd, 2022-10-03) Baral K; Bhandari S; Adhikari B; Kunwar RM; Sharma HP; Aryal A; Ji WWildlife conservation in human-dominated landscapes faces increased challenges due to rising conflicts between humans and wildlife. We investigated the human and wildlife loss rates due to human-wildlife conflict between 2000 and 2020 in Nepal. We concentrated on Asian elephant (Elephas maximus), greater one-horned rhino (Rhinoceros unicornis), tiger (Panthera tigirs), and leopard (Panthera pardus) mortality, as well as human mortality caused by these species. Over the 21-year period, we recorded 1139 cases of wildlife mortality and 887 cases of human mortality. Leopard mortality was the highest, followed by that of greater one-horned rhinos, tigers, and Asian elephants. Overall, the rate of wildlife mortality has been increasing over the years. Asian elephants were found to be more responsible for crop damage than greater one-horned rhinos, while leopards were found to be more responsible for livestock depredation than tigers. The generalized linear model indicated that the mortality of wildlife in the districts is best predicted by the additive effect of human mortality, the proportion of agricultural land, and the literacy rate of the districts. Retaliatory wildlife mortality was the most challenging issue for wildlife conservation, especially for the large mammals. Findings from this study are important for mitigation of human-wildlife conflicts, controlling retaliatory killing, and conserving these threatened large mammals.
- ItemCharacterization and management of human-wildlife conflicts in mid-hills outside protected areas of Gandaki province, Nepal(PLOS, 2021-11-19) Baral K; Sharma HP; Rimal B; Thapa-Magar K; Bhattarai R; Kunwar RM; Aryal A; Ji W; Sharma LKWith the intent to better management human wildlife conflict (HWC) and wildlife conservation in mid-hills outside protected areas of Gandaki province, Nepal, we analyzed the patterns and drivers of HWC. Using data collected from literature, government records and questionnaire survey, we investigated temporal, seasonal and spatial distribution of human casualties caused by wildlife attacks. We also appraised the perception of local people towards wildlife conservation. We have recorded 77 cases (69 human injuries and 8 mortalities) during the period of nine year between 2011 and 2019. The number of wildlife attacks increased over this period. Wildlife attacks were more frequent in winter with 50% (42) of attacks occurred between September and December. Common leopard (Panthera pardus) and Himalayan black bear (Ursus thibetanus laniger) were the major species involved in these conflicts. Common leopard was the most feared species that causes highest number of human mortalities (87%, n = 67); the most severe type of HWC outcome. Forty-eight percent (n = 37) attacks were reported at human settlement areas followed by 27% attacks in agriculture land (n = 21) and 24% (n = 19) in forest. Generalized linear model analysis on spatial variables showed that the probability of human attacks increases with decreasing elevation (β = -0.0021, Z = -1.762, p = 0.078) and distance from the forest (β = -0.608, Z = -0.789, p = 0.429). We recommend to decrease habitat degradation / fragmentation, carry out habitat management program within forest to increase prey availability to decrease the wildlife invasion into human settlement area, and decrease dependency of people on forest resources by providing alternative livelihood opportunities. Simplified relief fund distribution mechanism at local level also helps alleviate the impact of HWC. The knowledge obtained by this study and management measures are important for better human-wildlife co-existence.
- ItemHuman wildlife conflict and impacts on livelihood: A study in community forestry system in mid-hills of Nepal(MDPI (Basel, Switzerland), 2021-12-01) Baral K; Sharma HP; Kunwar R; Morley C; Aryal A; Rimal B; Ji W; Yosef RHuman wildlife conflict (HWC) impacts the livelihood of many rural communities world-wide. This study investigated the impact of HWC on people living near community forests (CF) in Nepal. Using databases provided by the Division of Forest Offices and data obtained from surveys between October 2019–March 2020, we quantified the financial loss of HWC to the local people. Between 2015 and 2019, 3315, or 27%, of the livestock owned by the survey respondents were killed by wild predators in the Kaski and Tanahun Districts. Chicken (Gallus spp.) was the most common prey taken (80%), followed by sheep (Ovis spp.) and goats (Capra spp.) (15%), cows (Bos spp.) (2%), pigs (Sus spp.) (2%), and buffalo (Bubalus spp.) (1%). Leopards (Panthera pardus) were the primary predators, followed by golden jackals (Canis aureus), jungle cats (Felis chaus), yellow-throated mar-tens (Martes flavigula), and Himalayan black bears (Ursus thibetanus). The financial loss of livestock during this period was USD $115,656.00, equivalent to USD $142.61 per household. Crops were also damaged and eaten by wildlife, and 2165 crop-raiding events were recorded between 2015 and 2019. Rice (Oryza sativa), followed by maize (Zea mays), millet (Panicum miliaceum), and potatoes (Solanum tuberosum) were the main crops lost. Rhesus monkeys (Macaca mulatta) were the most common crop raiders, causing 74% of the damage, followed by Indian field mice (Mus booduga) (12%). From 2015 to 2019, crop losses equated to USD $83,424.00. Forest regeneration on abandoned agricultural land expanded wildlife habitats, enabling wild animals to come within reach of human settlements, which increased the likelihood of HWC events. Although the success of the community forest res-toration program resulted in increased forest-cover, marginally increasing biodiversity, the reduced distance between human settlements and wildlife habitat, compounded by a lack of natural prey, may have unwittingly exacerbated HWC in this region. We recommend surveying predator and prey populations in the forest habitat, and implementing a habitat management program to improve prey populations within the community forests. Meantime, we propose establishing a financial relief and insurance program for crop and livestock losses at the local community level to alle-viate any financial difficulties to the local communities caused by HWC.
- ItemPatterns, perceptions, and spatial distribution of human-elephant (Elephas maximus) incidents in Nepal(Wildlife Information Liaison Development Society, 2021-05-28) Koirala RK; Ji W; Timilsina YP; Raubenheimer D; Davidar PNepal has an estimated population of 109 to 142 wild Asian Elephants Elephas maximus L.. We carried out a survey of humanelephant incidents (HEI) of conflict in the buffer zones of Chitwan National Park and Parsa National Park Nepal, using a structured questionnaire, focal interviews, and secondary data collection. Furthermore, data of HEI were also extracted from published literature in order to analyse spatial-temporal patterns of competition throughout Nepal. Elephant related incidents were higher in the pre-winter season and concentrated along the southern forest boundary; incidents decreased with increasing distance from the park/reserve. Crop damage by elephants occurred in pre-monsoon and winter seasons with the most impact on rice (the major crop). Bulls (single or in pairs) were involved in crop raids (44%), property damage (48%), and human casualties (8%); family herds were only recorded to have raided crops (39%) and damaged properties (36%). The average herd size recorded was 10 individuals, with a maximum group size of <22 elephants. Generally, incidents per elephant was high in western Nepal, whereas human and elephant casualties were higher in central and eastern regions. To reduce human-elephant incidents 53% of local residents suggested restoring core and boundary areas with native elephant food plants, 40% suggested planting alternative crops along park boundaries, 6% favoured elephant translocation, and only 1% percent was in favour of culling elephants. Mitigation measures already in place include wooden watch towers used by villagers to detect elephant incursions. Low impact traditional averting techniques, such as drumming and the use of flame torches, were used to deter intruding elephants at the areas surveyed. In conclusion we suggest potential mitigation measures such as identifying elephant refugia and mitigate the impact and assessing the year-round availability of preferred foods; in addition, we advocate for introducing an equitable compensation to gain support from local communities adjacent to protected areas.
- ItemPossibility of Wild Boar Harm Occurring in Five Provinces of Northwest China(MDPI (Basel, Switzerland), 2023-12-08) Liu P; Wang Z; An K; Tan Y; Ji W; Su J; Phillips CJCWith the implementation of ecological engineering projects and related policies in China, wild boar (Sus scrofa) populations have surged, leading to increasingly serious conflicts with humans. We evaluated their potential habitat changes from the perspective of environmental suitability. To elucidate the suitable habitat characteristics for wild boars, we obtained data from 79 sites in five provinces in northwest China using database retrieval, human-wildlife conflict (HWC) incident questionnaires, and document retrieval. Thus, 10 environmental variables with lower correlation were selected, and potentially suitable distribution areas for wild boars under the current climate scenario were predicted based on the maximum entropy model. These areas were superimposed with different land use types in different periods to explore habitat selection. Precipitation seasonality (26.40%), human footprint index (16.50%), and elevation (11.90%) were the main environmental factors affecting wild boar distribution. The areas with high potential suitability for wild boars were mainly in the southeast and northwest of the region (total area of 2.63 × 105 km2). The land use types in the high-suitability zones are mainly woodland and grassland with high coverage, canopy density, and cultivated land borders. This study provides a reference for the effective prevention of HWC and management of wild boars.
- ItemPrey selection by leopards (Panthera pardus fusca) in the mid-hill region of Nepal(John Wiley and Sons Ltd, 2024-02-05) Baral K; Bhandari S; Adhikari B; Kunwar RM; Sharma HP; Aryal A; Ji WInformation on prey selection and the diet of the leopard (Panthera pardus fusca) is essential for leopard conservation. We conducted an investigation into the prey species and the proportion of each species in the leopard's diet in a human-dominated mid-hill region of Nepal. The analysis of 96 leopard scats collected between August 2020 and March 2021 revealed that leopards consumed 15 prey species, including small- and medium-sized mammals and livestock. In addition to these prey species, we also found plastic materials, bird feathers, and some unidentified items in the leopard scats. Wild ungulates (such as barking deer, Muntiacus muntjak and wild boar, Sus scrofa) constituted only 10% of the biomass in the scats, while livestock contributed 27%, and other wild prey contributed 50%. Among all species, domestic goats had the highest relative biomass in the scats, followed by the jungle cat (Felis chaus), domestic dog (Canis familiaris), and large Indian civet (Viverra zibetha). Similarly, the Indian hare (Lepus nigricollis) had the highest proportion of relative individuals present in the scat samples, followed by the jungle cat and the large Indian civet. A lower proportion of biomass from wild ungulates in the leopard's diet and a higher dependency of the leopard on domestic prey and other wild prey indicate a shortage of medium-sized wild prey, such as barking deer and wild boar, in leopard habitats. Therefore, the conservation of wild prey species, especially medium-sized prey, is crucial for reducing the leopard's dependence on livestock and mitigating human-leopard conflicts in the future.
- ItemUAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution(MDPI AG, 29/09/2023) Ji W; Luo Y; Liao Y; Wu W; Wei X; Yang Y; Shen Y; Ma Q; He X; Yi S; Sun YGrazing management is one of the most widely practiced land uses globally. Quantifying the spatiotemporal distribution of livestock is critical for effective management of livestock-grassland grazing ecosystem. However, to date, there are few convincing solutions for livestock dynamic monitor and key parameters quantification under actual grazing situations. In this study, we proposed a pragmatic method for quantifying the grazing density (GD) and herding proximities (HP) based on unmanned aerial vehicles (UAVs). We further tested its feasibility at three typical household pastures on the Qinghai-Tibetan Plateau, China. We found that: (1) yak herds grazing followed a rotational grazing pattern spontaneously within the pastures, (2) Dispersion Index of yak herds varied as an M-shaped curve within one day, and it was the lowest in July and August, and (3) the average distance between the yak herd and the campsites in the cold season was significantly shorter than that in the warm season. In this study, we developed a method to characterize the dynamic GD and HP of yak herds precisely and effectively. This method is ideal for studying animal behavior and determining the correlation between the distribution of pastoral livestock and resource usability, delivering critical information for the development of grassland ecosystem and the implementation of sustainable grassland management.