Browsing by Author "Ilesanmi-Oyelere BL"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAssociations between dietary patterns and an array of inflammation biomarkers and plasma lipid profile in postmenopausal women.(BioMed Central, 2023-05-12) Ilesanmi-Oyelere BL; Kruger MCOBJECTIVE AND DESIGN: In this cross-sectional study, evaluation of the association between four dietary patterns, nutrients and food intakes and an array of systemic inflammation biomarkers and lipid profile among 80 New Zealand postmenopausal women were conducted. MATERIALS: Eighty postmenopausal women participated in the study. A validated food frequency questionnaire was used to collect nutrients and food intake. Four dietary patterns were identified by principal component analysis (PCA) and plasma samples collected for inflammatory biomarkers and lipid profile measures. RESULTS: There were negative correlations between intake of dietary fibre, soluble and insoluble non-starch polysaccharides (NSP), vitamin C and niacin and with almost all the inflammatory markers for the whole group. Vegetables, tea/coffee and especially fruit intake were negatively correlated with the inflammatory biomarkers in the whole group. A high intake of Pattern 1 (potato, bread, and fruit pattern) was associated with a low risk of high interferon (IFN)-α2, IFN-λ, interleukin (IL)-6 and IL-8 levels while a high intake of Pattern 3 (fast-food pattern) was associated high risk of IFN-α2 levels. Multiple linear regression showed a negative correlation between Pattern 2 (soups and vegetables pattern) and levels of C-reactive protein (CRP) as well as ferritin. A positive association was observed between Pattern 3 (fast-food pattern) and CRP levels. Positive correlation was also observed between Pattern 2 and high-density lipoprotein (HDL) and total cholesterol (TC) levels, Pattern 4 (meat and vegetables pattern) was however negatively correlated with TC, low-density lipoprotein (LDL) and TC/HDL ratio. CONCLUSIONS: The result of this study reinforces the contribution and role of diet in modifying inflammation in postmenopausal women.
- ItemB vitamins and homocysteine as determinants of bone health: A literature review of human studies(John Wiley and Sons Ltd on behalf of British Dietetic Association, 2023-06) Ilesanmi-Oyelere BL; Kruger MCAlthough there are several factors related to bone diseases such as physical activity, gender (oestrogen), race/ethnicity, smoking and alcohol habits, nutrition is a modifiable risk factor that could be employed to prevent or manage the onset of bone health diseases such as osteoporosis in humans. Aside from calcium and vitamin D, B vitamins are a group of water-soluble vitamins that play a vital role in cell metabolism. In this review, current evidence on B vitamins and bone health is assessed. Clinical trials (interventions) indicate that treatment with B vitamins impact the concentrations of total plasma/serum homocysteine concentrations (tHcy); however, most studies have reported the lack of an effect of low homocysteine concentrations on bone turnover markers, bone mineral density or fracture risks. Current studies have been inconsistent in their reports on the role of B vitamins and homocysteine in bone health. More data are therefore required to show the mechanism and effect of tHcy and B vitamins on bone mineral density, bone metabolism and fracture risk.
- ItemInflammatory markers and bone health in postmenopausal women: a cross-sectional overview(BioMed Central Ltd, 10/07/2019) Ilesanmi-Oyelere BL; Schollum L; Kuhn-Sherlock B; McConnell M; Mros S; Coad J; Roy NC; Kruger MCBackground: Cytokines, chemokines, C-reactive proteins (CRP) and ferritin are known inflammatory markers. However, cytokines such as interleukin (IL-1β), (IL-6) and tumour necrosis factor (TNF-α) have been reported to interfere with both the bone resorption and bone formation processes. Similarly, immune cell cytokines are known to contribute to inflammation of the adipose tissue especially with obesity. IL-10 but not IL-33 has been linked to lower ferritin levels and anemia. In this study, we hypothesized that specific cytokine levels in the plasma of women with low bone mineral density (BMD) would be higher than those in the plasma of healthy women due to the actions of elevated levels of pro-inflammatory cytokines in inducing osteoclast formation and differentiation during senescence. Results: Levels of cytokines (IFNα2, IFN-γ, IL-12p70, IL-33) and monocyte chemoattractant protein-1 (MCP-1) were significantly higher in the plasma of the osteoporotic group compared to the osteopenic and/or healthy groups. Meanwhile CRP levels were significantly lower in women with osteoporosis (P = 0.040) than the osteopenic and healthy groups. Hip BMD values were significantly lower in women with high/detectable values of IL-1β (P = 0.020) and IL-6 (P = 0.030) compared to women where these were not detected. Similarly, women with high/detectable values of IL-1β had significantly lower spine BMD than those where IL-1β was not detected (P = 0.030). Participants' CRP levels were significantly positively correlated with BMI, fat mass and fat percentage (P < 0.001). In addition, ferritin levels of women with high/detectable values of anti-osteoclastogenic IL-10 (P = 0.012) and IL-33 (P = 0.017) were significantly lower than those where these were not detected. There was no statistically significant association between TNF-α and BMD of the hip and lumbar spine. Conclusions: High levels of cytokines (IFNα2, IFN-γ, IL-12p70, IL-33) and MCP-1 in apparently healthy postmenopausal women are associated with bone health issues. In addition, an increase in levels of IL-10 and IL-33 may be associated with low ferritin levels in this age group. Trial registration: ANZCTR, ACTRN12617000802303. Registered May 31st, 2017, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373020.
- ItemModulation of Bone and Joint Biomarkers, Gut Microbiota, and Inflammation Status by Synbiotic Supplementation and Weight-Bearing Exercise: Human Study Protocol for a Randomized Controlled Trial(JMIR Publications, 2021-10-26) Ilesanmi-Oyelere BL; Roy NC; Kruger MC; Eysenbach GBACKGROUND: There is strong evidence suggesting that prebiotics and probiotics regulate gut microbiota, reducing inflammation and thereby potentially improving bone health status. Similarly, mechanistic evidence suggests that either low-impact or high-impact weight-bearing exercises improve body composition and consequently increase bone mineral density in individuals with osteoporosis and osteoarthritis. OBJECTIVE: This study aims to investigate the effects of a synbiotic (probiotic+prebiotic) supplementation, an exercise intervention, or a combination of both on gut microbiota, inflammation, and bone biomarkers in postmenopausal women. METHODS: A total of 160 postmenopausal women from New Zealand will be recruited and randomized to one of four interventions or treatments for 12 weeks: control, synbiotic supplementation, exercise intervention, or synbiotic supplementation and exercise. The primary outcome measure is the bone and joint biomarkers at baseline and week 12, whereas the gut microbiota profile and inflammatory cytokine measurements will serve as the secondary outcome measures at baseline and week 12. Baseline data and exercise history will be used to assess, allocate, and stratify participants into treatment measures. RESULTS: Recruitment of participants will begin in September 2021, and the anticipated completion date is June 2022. CONCLUSIONS: To the best of our knowledge, this will be the first randomized controlled trial to analyze the effects of both a synbiotic supplement and an exercise intervention in postmenopausal women. On the basis of the results obtained, a combination of synbiotic supplements and exercise might serve as a noninvasive approach to manage and/or improve body composition and bone health in postmenopausal women. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12620000998943p; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=380336&isClinicalTrial=False.
- ItemPotential modulatory mechanisms of action by long-chain polyunsaturated fatty acids on bone cell and chondrocyte metabolism(Elsevier Ltd, 2021-07-03) Abshirini M; Ilesanmi-Oyelere BL; Kruger MCLong-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are considered essential factors to support bone and joint health. The n-6 PUFAs suppress the osteoblasts differentiation via increasing peroxisome proliferator-activated receptor gamma (PPARγ) expression and promoting adipogenesis while n-3 PUFAs promote osteoblastogenesis by down-regulating PPARγ and enhancing osteoblastic activity. Arachidonic acid (AA) and its metabolite prostaglandin E2 (PGE2) are key regulators of osteoclast differentiation via induction of the receptor activator of nuclear factor kappa-Β ligand (RANKL) pathway. Marine-derived n-3 LCPUFAs have been shown to inhibit osteoclastogenesis by decreasing the osteoprotegerin (OPG)/RANKL signalling pathway mediated by a reduction of pro-inflammatory PGE2 derived from AA. Omega-3 PUFAs reduce the expression of cartilage degrading enzyme matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloprotease with thrombospondin motifs-5 (ADAMTS-5) protein, oxidative stress and thereby apoptosis via nuclear factor kappa-betta (NF-kβ) and inducible nitric oxide synthase (iNOS) pathways. In this review, a diverse range of important effects of LCPUFAs on bone cells and chondrocyte was highlighted through different mechanisms of action established by cell cultures and animal studies. This review allows a better understanding of the possible role of LCPUFAs in bone and chondrocyte metabolism as potential therapeutics in combating the pathological complications such as osteoporosis and osteoarthritis.
- ItemThe Gut Microbiome Is Altered in Postmenopausal Women With Osteoporosis and Osteopenia(Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research, 2021-03-24) Rettedal EA; Ilesanmi-Oyelere BL; Roy NC; Coad J; Kruger MCOsteoporosis and its precursor osteopenia are common metabolic bone diseases in postmenopausal women. A growing body of evidence suggests that the gut microbiota is involved in the regulation of bone metabolism; however, there are few studies examining how gut microbiomes in osteoporosis and osteopenia may differ from those in healthy individuals. The aim of this study was to characterize the diversity, composition, and functional gene potential of the gut microbiota of healthy, osteopenic, and osteoporotic women. Body composition, bone density, and fecal metagenomes were analyzed in 86 postmenopausal women. The women were classified as healthy, osteopenic, or osteoporotic based on T-scores. The taxonomic and functional gene compositions of the microbiome were analyzed using shotgun metagenomic sequencing. Both osteoporotic and osteopenic taxonomic compositions were found to be significantly different from healthy participants. Linear discriminant-analysis effect-size analyses identified that healthy participants had more unclassified Clostridia and methanogenic archaea (Methanobacteriaceae) than in both osteoporotic and osteopenic participants. Bacteroides was found to be more abundant in osteoporosis and osteopenia groups. Some KEGG pathways, including carbohydrate metabolism, biosynthesis of secondary metabolites, and cyanoamino acid metabolism, were found to be more abundant in both osteoporosis and osteopenia. These results show that osteoporosis and osteopenia alter the gut microbiome of postmenopausal women and identify potential microbial taxonomic and functional pathways that may be involved in this disease.
- ItemThe Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women(MDPI (Basel, Switzerland), 3/06/2019) Ilesanmi-Oyelere BL; Brough L; Coad J; Roy N; Kruger MCIn women, the menopausal transition is characterized by acid-base imbalance, estrogen deficiency and rapid bone loss. Research into nutritional factors that influence bone health is therefore necessary. In this study, the relationship between nutrient patterns and nutrients important for bone health with bone mineral density (BMD) was explored. In this cross-sectional analysis, 101 participants aged between 54 and 81 years were eligible. Body composition and BMD analyses were performed using dual-energy X-ray absorptiometry (DXA). Nutrient data were extracted from a 3-day diet diary (3-DDD) using Foodworks 9 and metabolic equivalent (MET-minutes) was calculated from a self-reported New Zealand physical activity questionnaire (NZPAQ). Significant positive correlations were found between intakes of calcium (p = 0.003, r = 0.294), protein (p = 0.013, r = 0.246), riboflavin (p = 0.020, r = 0.232), niacin equivalent (p = 0.010, r = 0.256) and spine BMD. A nutrient pattern high in riboflavin, phosphorus and calcium was significantly positively correlated with spine (p < 0.05, r = 0.197) and femoral neck BMD (p < 0.05, r = 0.213), while the nutrient pattern high in vitamin E, α-tocopherol, β-carotene and omega 6 fatty acids was negatively correlated with hip (p < 0.05, r = -0.215) and trochanter BMD (p < 0.05, r = -0.251). These findings support the hypothesis that a nutrient pattern high in the intake of vitamin E, α-tocopherol and omega 6 fatty acids appears to be detrimental for bone health in postmenopausal women.