Browsing by Author "Holt K"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHigh-resolution stable isotope profiles from shells of the land snail Placostylus reveal contrasting patterns between snails originating from New Zealand and New Caledonia(John Wiley and Sons Ltd, 2023-05-31) Quenu M; Judd EJ; Morgan-Richards M; Trewick SA; Holt K; Tyler J; Lorrey AMThe stable oxygen (δ18Oshell) and carbon (δ13Cshell) isotope ratios retrieved from the carbonate shell of terrestrial gastropods can be used as an environmental proxy and are thought to reflect dietary composition and ambient climatic conditions (e.g. precipitation amount, humidity, temperature). Here, we generate high-resolution isotopic profiles of nine modern land snails of the genus Placostylus, collected from two locations in New Caledonia and one location in New Zealand. We found that snails from New Zealand had, on average, higher δ18Oshell values than their counterparts in New Caledonia, which surprisingly runs counter to the expected relationship based on the isotopic composition of rainwater between these two regions. Specimens from New Caledonia exhibit ephemeral decreases in their δ18Oshell values, which could be linked to extreme precipitation events in this region, while snails from New Zealand have less variation in their δ18Oshell values. Snails from New Zealand had, on average, slightly higher δ13Cshell than their counterparts in New Caledonia, but a large difference in carbon isotopes was sometimes observed between snails collected at the same location. Most snails exhibit a temporal trend in their δ13Cshell values, indicating potential shifts in diet through to maturity.
- ItemUsing pollen in turbidites for vegetation reconstructions(John Wiley and Sons Ltd, 2024-09-19) McDonald LS; Strachan LJ; Holt K; McArthur AD; Barnes PM; Maier KL; Orpin AR; Horrocks M; Ganguly A; Hopkins JL; Bostock HCTurbidites, deposited by sub-aqueous gravity flows, are common in sedimentary archives worldwide and present a unique challenge and opportunity when reconstructing past vegetation through pollen analysis. When sampling pollen from a sediment core for palaeovegetation records, it is common practice to target background sediments (i.e. pelagic sediment) and avoid sampling turbidites, as they are presumed to portray a misleading picture of past vegetation. This assumption stems from our limited understanding of pollen abundance and distribution through turbidites, meaning that palynologists overlook deposits that could potentially be used to reconstruct past vegetation and climate. We present pollen assemblage and sedimentological data from four recent (<150 years) deep marine turbidite deposits from the Hikurangi Subduction Margin, Aotearoa-New Zealand, with the aim of understanding the abundance and distribution of pollen in fine-grained turbidites. We find that pollen is diluted in the bases of turbidites, but despite this dilution, the proportions of different pollen taxa remain consistent through each turbidite. These results confirm that pollen can be sampled from turbidites for palaeovegetation reconstructions and that sampling the fine-grained upper parts of turbidites will provide the best pollen recovery.