Browsing by Author "Holopainen JK"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemEffects of Two Invasive Weeds on Arthropod Community Structure on the Central Plateau of New Zealand(MDPI (Basel, Switzerland), 20/07/2020) Effah E; Barrett DP; Peterson PG; Potter MA; Holopainen JK; Clavijo McCormick AHeather (Calluna vulgaris) and broom (Cytisus scoparius), originally from Europe, are the main invasive plants on New Zealand's North Island Central Plateau, where they threaten native flora and fauna. Given the strong link between arthropod communities and plants, we explored the impact of these invasive weeds on the diversity and composition of associated arthropod assemblages in this area. The arthropods in heather-invaded areas, broom-invaded areas, and areas dominated by the native species mānuka (Leptospermum scoparium) and Dracohyllum (Dracophyllum subulatum) were collected and identified to order. During summer and autumn, arthropods were collected using beating trays, flight intercept traps and pitfall traps. Diversity indices (Richness, Shannon's index and Simpson's index) were calculated at the order level, and permutational multivariate analysis (PERMANOVA) was used to explore differences in order-level community composition. Our results show a significant variation in community composition for all trapping methods in both seasons, whereas invasive plants did not profoundly impact arthropod order richness. The presence of broom increased arthropod abundance, while heather was linked to a reduction. Under all possible plant pairings between heather, broom, mānuka, and Dracophylum, the impact of neighbouring plant identity on arthropod community composition was further explored for the samples collected using beating trays. The results suggest that during plant invasion, arthropod communities are affected by neighbouring plant identity and that impacts vary between arthropod sampling methods and seasons.
- ItemHerbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris(MDPI (Basel, Switzerland), 13/07/2020) Effah E; Barrett DP; Peterson PG; Wargent JJ; Potter MA; Holopainen JK; Clavijo McCormick ACalluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of "adjustment" involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018-2019, reflecting variations in beetle's abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.
- ItemNatural Variation in Volatile Emissions of the Invasive Weed Calluna vulgaris in New Zealand(MDPI (Basel, Switzerland), 21/02/2020) Effah E; Barrett DP; Peterson PG; Godfrey AJR; Potter MA; Holopainen JK; Clavijo McCormick AInvasive plants pose a threat to natural ecosystems, changing the community composition and ecological dynamics. One aspect that has received little attention is the production and emission of volatile organic compounds (VOCs) by invasive plants. Investigating VOCs is important because they are involved in vital ecological interactions such as pollination, herbivory and plant competition. Heather, Calluna vulgaris, is a major invasive weed in New Zealand, especially on the Central Plateau, where it has spread rapidly since its introduction in 1912, outcompeting native species. However, the chemical behaviour of heather in its invaded ranges is poorly understood. We aimed to explore the natural variation in volatile emissions of heather and the biotic and abiotic factors influencing them on the Central Plateau of New Zealand. To this end, foliar volatiles produced by heather at four different sites were collected and analysed using gas chromatography coupled to mass spectrometry. Soil properties, herbivory and other environmental data were also collected at each site to investigate their effects on VOC emissions using generalised linear models (GLMs). Our results reveal significant differences in VOC emissions between sites and suggest that soil nutrients are the main factor accounting for these differences. Herbivory and temperature had only a minor effect, while soil water content had no impact. Further studies are needed to investigate how these variations in the invasive plant's foliar volatiles influence native species.
- ItemSeasonal and environmental variation in volatile emissions of the New Zealand native plant Leptospermum scoparium in weed-invaded and non-invaded sites(Springer Nature Limited, 16/07/2020) Effah E; Barrett DP; Peterson PG; Potter MA; Holopainen JK; Clavijo McCormick AThe New Zealand tea tree Leptospermun scoparium (mānuka) is widely known for the antimicrobial properties of its honey. Mānuka is native to New Zealand, growing in a range of environments, including the Central Volcanic Plateau of the North Island, where it is currently threatened by the spread of exotic invasive weeds such as heather (Calluna vulgaris) and Scotch broom (Cytisus scoparius). Here, we characterise for the first time the aboveground volatile organic compounds (VOCs) produced by mānuka in this area, during summer and winter seasons, in weed-invaded and non-invaded stands. We measured plant volatiles at four sites, each with a distinct combination of woody species: (1) conspecific stands of mānuka; (2) mānuka and another native species (Dracophyllum subulatum); and mānuka with one of two European invasive plants, (3) heather or (4) Scotch broom. We also quantified herbivore damage on target mānuka plants and analysed microclimatic variables (soil nutrients, air temperature and soil water content) to investigate their impact on volatile emissions. Our results reveal a strong seasonal effect on volatile emissions, but also significant differences between sites associated with biotic and abiotic changes partly driven by invasive plants. Overall, volatile emission rates from mānuka were typically lower at sites where invaders were present. We point to several factors that could contribute to the observed emission patterns and areas of interest for future research to provide a comprehensive understanding of VOC emissions in nature. Given the vital role of volatile compounds in plant communication, we also recommend future studies to be performed in multiple seasons, with larger sample sizes and more study sites to expand on these findings and explore the ecological impacts of changes in VOC emissions during plant invasion.
- ItemSeasonal Volatile Emission Patterns of the Endemic New Zealand Shrub Dracophyllum subulatum on the North Island Central Plateau(Frontiers Media S.A., 2021-10) Effah E; Barrett DP; Peterson PG; Potter MA; Holopainen JK; Clavijo McCormick A; Rewald BVolatile organic compounds (VOCs) produced by plants are essential indicators of their physiological response to environmental conditions. But evidence of natural variation in VOC emissions and their contributing factors is still limited, especially for non-cultivated species. Here we explored the natural volatile emissions of Dracophyllum subulatum Hook.f., an endemic shrub to the North Island Central Plateau of New Zealand, and determined some environmental factors driving the plant's emissions. Volatile emissions of D. subulatum were measured on four separate occasions from December 2017 to September 2018 using the "push-pull" headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). D. subulatum was classified based on the volatiles measured on each sampling occasion using linear discriminant analysis (LDA). On each sampling occasion, we also recorded and compared ambient air temperature, herbivory damage, total soil nitrogen (N), available phosphorus (P), potassium (K), and soil moisture content. The relationship between environmental variables that differed significantly between sampling occasions and volatile emissions were estimated using generalized linear models (GLMs). Based on VOCs measured on each sampling occasion, we were able to distinguish different chemical profiles. Overall, we found that total emission and the relative proportions of all major chemical classes released by D. subulatum were significantly higher during summer. The GLMs reveal that differences in environmental factors between the four sampling occasions are highly associated with changing emissions. Higher temperatures in summer had a consistently strong positive relationship with emissions, while the impacts of soil moisture content, P and K were variable and depended on the chemical class. These results are discussed, particularly how high temperature (warming) may shape volatile emissions and plants' ecology.