Browsing by Author "Hill JP"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemAnimal and plant-sourced nutrition: Complementary not competitive(CSIRO Publishing, 2022-05) Smith NW; Fletcher AJ; Hill JP; McNabb WC; Pembleton KDebate on the sustainability of the global food system often compares the environmental, economic and health impacts of plant- and animal-sourced foods. This distinction can mask the considerable variation in impacts across and within these food groups. Moreover, the nutritional benefits of these food groups are insufficiently discussed. In this review, we highlight the nutritional contribution to the current global food system of both plant- and animal-sourced foods and place their impacts on human health in the global context. We highlight how the comparison of the environmental impacts of foods via life cycle analyses can change on the basis of the functional unit used, particularly the use of mass as opposed to nutrient content or nutrient richness. We review the literature on the affordability of nutrient-adequate diets, demonstrating the presence of both plant- and animal-sourced foods in affordable nutritious diets. Finally, we address the potential of alternative food sources that are gaining momentum, to ask where they may fit in a sustainable food system. We conclude that there is a clear place for both plant- and animal-sourced foods in future sustainable food systems, and a requirement for both for sustainable global nutrition; as such, the two groups are complementary and not competitive.
- ItemEstimating cropland requirements for global food system scenario modeling(Frontiers Media S.A., 2022-12-16) Smith NW; Fletcher AJ; Millard P; Hill JP; McNabb WC; Ridoutt BGIntroduction: The production of plant crops is foundational to the global food system. With the need for this system to become more sustainable while feeding an increasing global population, tools to investigate future food system scenarios can be useful to aid decision making, but are often limited to a calorie- or protein-centric view of human nutrition. Methods: Here, a mathematical model for forecasting the future cropland requirement to produce a given quantity of crop mass is presented in conjunction with the DELTA Model®: an existing food system scenario model calculating global availability of 29 nutrients against human requirements. The model uses national crop yield data to assign yield metrics for 137 crops. Results: The crops with the greatest variation between high and low yielding production were specific nuts, fruits, and vegetables of minor significance to global nutrient availability. The nut crop group showed the greatest overall yield variation between countries, and thus the greatest uncertainty when forecasting the cropland requirement for future increases in production. Sugar crops showed the least overall yield variation. The greatest potential for increasing global food production by improving poor yielding production was found for the most widely grown crops: maize, wheat, and rice, which were also demonstrated to be of high nutritional significance. Discussion: The combined cropland and nutrient availability model allowed the contribution of plant production to global nutrition to be quantified, and the cropland requirement of future food production scenarios to be estimated. The unified cropland estimation and nutrient availability model presented here is an intuitive and broadly applicable tool for use in global food system scenario modeling. It should benefit future research and policy making by demonstrating the implications for human nutrition of changes to crop production, and conversely the implications for cropland requirement of food production scenarios aimed at improving nutrition.
- ItemHeat-set gelation of milk- and fermentation-derived β-lactoglobulin variants(Elsevier Ltd, 2025-08) Pan Z; Kornet R; Hewitt S; Welman A; Hill JP; Wubbolts M; Mitchell S; McNabb WC; Ye A; Acevedo-Fani A; Anema SGMilk-derived β-lactoglobulin (mβ-LG) and fermentation-derived β-lactoglobulin (fβ-LG) may slightly differ in their amino acid sequences. This study aims to investigate the heat-set gelling behaviour of mβ-LG (variants A, B, and C) and fβ-LG A variants. Differential scanning calorimetry indicated similar denaturation temperatures for mβ-LG A and fβ-LG A (∼75 °C), with mβ-LG C highest (∼81 °C) and mβ-LG B intermediate (∼78 °C). All fβ-LG A formed translucent gels with a fine-stranded structure, whereas mβ-LG A, B, and C formed opaque gels with a coarse particulate structure. fβ-LG A exhibited delayed gelation onset and lower gel stiffness compared to mβ-LG A. Among mβ-LG's, mβ-LG A showed the highest gel stiffness, followed by mβ-LG B and then mβ-LG C. Rheological analysis showed that fβ-LG A gels were more elastic and ductile compared to mβ-LG A gels, indicated by smaller tan δ values and delayed increases in energy dissipation ratio at higher strain amplitude; mβ-LG B and mβ-LG C gels were less elastic but more ductile compared to mβ-LG A gels. The more elastic and ductile nature of fβ-LG A gels indicates their potential for applications requiring these specific textural properties. By selecting mβ-LG variants from milk and/or utilizing precision fermentation to engineer additional differences, it is possible to tailor the gelation characteristics of β-LG to meet specific functional requirements.
- ItemModeling the Contribution of Meat to Global Nutrient Availability(Frontiers Media S.A., 2022-02-02) Smith NW; Fletcher AJ; Hill JP; McNabb WC; Berry EAn increasing global population requires increasing food and nutrient availability. Meat is recognized as a nutrient dense food, particularly notable for its high-quality protein content, B vitamin and mineral content. However, it is not known how important meat is currently in nourishing the global population. The DELTA Model was used to calculate the contribution of meat (defined as animal flesh, excluding fish and seafood) to the global availability of 29 nutrients. This model utilizes global food production and use data, coupled with data for food waste, food nutrient composition and nutrient bioavailability to calculate the total amount of each nutrient available for consumption by the global population. Around 333 million tons of meat were produced globally in 2018, 95% of which was available as food, constituting ~7% of total food mass. Meat's contribution to nutrient availability was disproportionately higher than this: meat provided 11% of global food energy availability, 29% of dietary fat and 21% of protein. For the micronutrients, meat provided high proportions of vitamins: A (24%), B1 and B2 (15% each), B5 (10%), B6 (13%), and B12 (56%). Meat also provided high proportions of several trace elements: zinc (19%), selenium (18%), iron (13%), phosphorous (11%), and copper (10%). Meat is a poor contributor to fiber, magnesium and vitamins C and E. Meat was responsible for 16% (cystine) to 32% (lysine) of global availability of the bioavailable indispensable amino acids included in the model, due partly to the high digestibility of these nutrients from meat (83-100%). Of the total meat mass available as food in 2018, 23% was ruminant meat, 34% poultry meat, 32% pig meat, 2% other meat, and 9% offal and fats. The disproportionate contribution of meat to the global availability of nutrients emphasizes its important place in delivering nutrition to the current global population.
- ItemModeling the Contribution of Milk to Global Nutrition(Frontiers Media S.A., 2022-01-13) Smith NW; Fletcher AJ; Hill JP; McNabb WC; Skeaff SANutrient-rich foods play a major role in countering the challenges of nourishing an increasing global population. Milk is a source of high-quality protein and bioavailable amino acids, several vitamins, and minerals such as calcium. We used the DELTA Model, which calculates the delivery of nutrition from global food production scenarios, to examine the role of milk in global nutrition. Of the 29 nutrients considered by the model, milk contributes to the global availability of 28. Milk is the main contributing food item for calcium (49% of global nutrient availability), Vitamin B2 (24%), lysine (18%), and dietary fat (15%), and contributes more than 10% of global nutrient availability for a further five indispensable amino acids, protein, vitamins A, B5, and B12, phosphorous, and potassium. Despite these high contributions to individual nutrients, milk is responsible for only 7% of food energy availability, indicating a valuable contribution to global nutrition without necessitating high concomitant energy intakes. Among the 98 food items considered by the model, milk ranks in the top five contributors to 23 of the 29 nutrients modeled. This quantification of the importance of milk to global nutrition in the current global food system demonstrates the need for the high valuation of this food when considering future changes to the system.
- ItemModeling the feasibility of fermentation-produced protein at a globally relevant scale(Frontiers Media S.A., 2024-07-10) Fletcher AJ; Smith NW; Hill JP; McNabb WCIntroduction: Fermentation-produced protein (FPP) is gaining global interest as a means of protein production with potentially lower cost and environmental footprint than conventionally-produced animal-sourced proteins. However, estimates on the potential performance of FPP vary substantially, limiting assessment of its scalability and utility. Methods: We integrate life cycle analysis data with nutritional and economic data in an interactive online tool, simulating the requirements and consequences of fermentation at a globally-relevant scale. Results: The tool demonstrates that production of an additional 18 million tons of protein annually via fermentation (~10% of 2020 global consumption) would necessitate 10–25 million hectares of feedstock cropland expansion/reallocation, utilize up to 1% of global electricity generation, produce 159 million tons CO2 equivalents, and have a total process input cost of 53.77 billion USD, with a negligible impact on nutrient supply beyond protein. Discussion: This tool should be used to inform the debate on the future use of fermentation in the food system.
- ItemNutritional assessment of plant-based beverages in comparison to bovine milk(Frontiers Media S.A., 2022-08-08) Smith NW; Dave AC; Hill JP; McNabb WC; Skeaff, SAPlant-based beverages (PBB) are often marketed and used by consumers as alternatives to ruminant milks, particularly bovine milk (hereafter referred to as milk). However, much research has established that there is variation in nutritional composition among these products, as well as demonstrating that they are largely not nutritional replacements for milk. A survey of the prices and nutrition labels of PBB available in New Zealand supermarkets was undertaken. Selected almond, coconut, oat, rice, and soy PBB products were then analyzed for nutritional content, including energy, fat, protein, amino acid, bioavailable amino acid, and trace element contents. Finally, the protein and calcium contents of well-mixed and unshaken products were analyzed to ascertain the impact of colloidal stability on nutrient content. All PBB groups were more expensive than milk on average, while their declared nutrient contents on package labels was highly variable within and between groups. Analyses of selected PBB revealed that soy products had the most similar proximate composition to milk, while all other PBB groups contained less than 1.1 g protein per 100 mL on average. Many PBB were fortified with calcium to a similar concentration as that in milk. Shaken and unshaken samples showed divergent protein and calcium content for several PBB products but had no effect on the composition of milk, indicating that the nutrient content of PBB at the point of consumption will be dependent on whether the product has been shaken. Only the soy PBB had comparable amino acid content and bioavailability to milk. Overall, our results demonstrate the diversity in composition and nutritional properties of PBB available in New Zealand. While the existent environmental footprint data on PBB shows that they generally have lower carbon emissions than milk, milk currently accounts for approximately 1% of the average New Zealand resident's consumption-based emissions. Except for calcium-fortified soy PBB, none of the commercially available PBB had nutritional compositions that were broadly comparable to milk.
- ItemTaking a Consumer-Led Approach to Identify Key Characteristics of an Effective Ecolabelling Scheme(MDPI (Basel, Switzerland), 2024-07-01) Hay C; Meyer K; Rutherford-Carr G; Hill JP; Hort J; Johnson LA gap exists between consumer adoption of sustainable purchasing habits and the behavioural changes required to significantly decrease planetary environmental impact. Current ecolabels do not enable purchasing based on environmental impact, and an effective labelling scheme is required to change purchasing priorities. Using focus groups, ecolabels with components varying in the depth of environmental information conveyed, visual features employed, as well as product comparability and scalability of design, were evaluated by consumers with differing levels of environmental awareness. Independent, credible information accessible to consumers of varying environmental awareness was a participant priority. In-depth data communicated through a bar or pie chart with an interpretable holistic message across all environmental factors was preferred. Colour-coded components offering product comparisons and scalable to the size of the packaging, product value, and lifetime were most likely to empower environmentally motivated purchasing. Insights can inform the development of an effective ecolabelling scheme that equips consumers to adopt more sustainable purchasing habits.
- ItemUse of the DELTA Model to Understand the Food System and Global Nutrition(Oxford University Press on behalf of the American Society for Nutrition, 2021-10) Smith NW; Fletcher AJ; Dave LA; Hill JP; McNabb WCBACKGROUND: Increasing attention is being directed at the environmental, social, and economic sustainability of the global food system. However, a key aspect of a sustainable food system should be its ability to deliver nutrition to the global population. Quantifying nutrient adequacy with current tools is challenging. OBJECTIVE: To produce a computational model illustrating the nutrient adequacy of current and proposed global food systems. METHODS: The DELTA Model was constructed using global food commodity balance sheet data, alongside demographic and nutrient requirement data from UN and European Food Safety Authority sources. It also includes nutrient bioavailability considerations for protein, the indispensable amino acids, iron, and zinc, sourced from scientific literature. RESULTS: The DELTA Model calculates global per capita nutrient availability under conditions of equal distribution and identifies areas of nutrient deficiency for various food system scenarios. Modeling the 2018 global food system showed that it supplied insufficient calcium (64% of demographically weighted target intake) and vitamin E (69%), despite supplying sufficient macronutrients. Several future scenarios were modeled, including variations in waste; scaling up current food production for the 2030 global population; plant-based food production systems; and removing sugar crops from the global food system. Each of these scenarios fell short of meeting requirements for multiple nutrients. These results emphasize the need for a balanced approach in the design of future food systems. CONCLUSIONS: Nutrient adequacy must be at the forefront of the sustainable food system debate. The DELTA Model was designed for both experts and nonexperts to inform this debate as to what may be possible, practical, and optimal for our food system. The model results strongly suggest that both plant and animal foods are necessary to achieve global nutrition. The model is freely available for public use so that anyone can explore current and simulated global food systems.