Browsing by Author "Hickson RI"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model.(The Royal Society, 2024-06-05) Ryan M; Brindal E; Roberts M; Hickson RIThe health and economic impacts of infectious diseases such as COVID-19 affect all levels of a community from the individual to the governing bodies. However, the spread of an infectious disease is intricately linked to the behaviour of the people within a community since crowd behaviour affects individual human behaviour, while human behaviour affects infection spread, and infection spread affects human behaviour. Capturing these feedback loops of behaviour and infection is a well-known challenge in infectious disease modelling. Here, we investigate the interface of behavioural science theory and infectious disease modelling to explore behaviour and disease (BaD) transmission models. Specifically, we incorporate a visible protective behaviour into the susceptible-infectious-recovered-susceptible (SIRS) transmission model using the socio-psychological Health Belief Model to motivate behavioural uptake and abandonment. We characterize the mathematical thresholds for BaD emergence in the BaD SIRS model and the feasible steady states. We also explore, under different infectious disease scenarios, the effects of a fully protective behaviour on long-term disease prevalence in a community, and describe how BaD modelling can investigate non-pharmaceutical interventions that target-specific components of the Health Belief Model. This transdisciplinary BaD modelling approach may reduce the health and economic impacts of future epidemics.
- ItemHow immune dynamics shape multi-season epidemics: a continuous-discrete model in one dimensional antigenic space.(Springer, 2024-03-27) Roberts MG; Hickson RI; McCaw JMWe extend a previously published model for the dynamics of a single strain of an influenza-like infection. The model incorporates a waning acquired immunity to infection and punctuated antigenic drift of the virus, employing a set of coupled integral equations within a season and a discrete map between seasons. The long term behaviour of the model is demonstrated by examples where immunity to infection depends on the time since a host was last infected, and where immunity depends on the number of times that a host has been infected. The first scenario leads to complicated dynamics in some regions of parameter space, and to regions of parameter space with more than one attractor. The second scenario leads to a stable fixed point, corresponding to an identical epidemic each season. We also examine the model with both paradigms in combination, almost always but not exclusively observing a stable fixed point or periodic solution. Adding stochastic perturbations to the between season map fails to destroy the model's qualitative dynamics. Our results suggest that if the level of host immunity depends on the elapsed time since the last infection then the epidemiological dynamics may be unpredictable.