Browsing by Author "Heath ACG"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAspects of the development of Ixodes anatis under different environmental conditions in the laboratory and in the field(BioMed Central Ltd, 2021-12) Bansal N; Pomroy WE; Heath ACG; Castro IBACKGROUND: Numerous laboratory and fewer field-based studies have found that ixodid ticks develop more quickly and survive better at temperatures between 18 °C and 26 °C and relative humidity (RH) between 75 and 94%. Ixodes anatis Chilton, 1904, is an endophilic, nidicolous species endemic to North Island brown kiwi (Apteryx mantelli) (NIBK) and the tokoeka (Apteryx australis), and little is known about the environmental conditions required for its development. The aims of this study were to determine and compare the conditions of temperature and RH that ensure the best survival of the kiwi tick and the shortest interstadial periods, in laboratory conditions and outdoors inside artificial kiwi burrows. METHODS: Free-walking engorged ticks were collected off wild kiwi hosts and placed in the laboratory under various fixed temperature and humidity regimes. In addition, sets of the collected ticks at different developmental stages were placed in artificial kiwi burrows. In both settings, we recorded the times taken for the ticks to moult to the next stage. RESULTS: Larvae and nymphs both showed optimum development at between 10 °C and 20 °C, which is lower than the optimum temperature for development in many other species of ixodid ticks. However, larvae moulted quicker and survived better when saturation deficits were < 1-2 mmHg (RH > 94%); in comparison, the optimum saturation deficits for nymph development were 1-10 mmHg. CONCLUSIONS: Our results suggest that the kiwi tick has adapted to the stable, but relatively cool and humid conditions in kiwi burrows, reflecting the evolutionary consequences of its association with the kiwi.
- ItemPredicting the potential distribution of Amblyomma americanum (Acari: Ixodidae) infestation in New Zealand, using maximum entropy-based ecological niche modelling(Springer Nature Switzerland AG, 2020-02) Raghavan RK; Heath ACG; Lawrence KE; Ganta RR; Peterson AT; Pomroy WEAlthough currently exotic to New Zealand, the potential geographic distribution of Amblyomma americanum (L.), the lone star tick, was modelled using maximum entropy (MaxEnt). The MaxEnt model was calibrated across the native range of A. americanum in North America using present-day climatic conditions and occurrence data from museum collections. The resulting model was then projected onto New Zealand using both present-day and future climates modelled under two greenhouse gas emission scenarios, representative concentration pathways (RCP) 4.5 (low) and RCP 8.5 (high). Three sets of WorldClim bioclimatic variables were chosen using the jackknife method and tested in MaxEnt using different combinations of model feature class functions and regularization multiplier values. The preferred model was selected based on partial receiver operating characteristic tests, the omission rate and the lowest Akaike information criterion. The final model had four bioclimatic variables, Annual Mean Temperature (BIO1), Annual Precipitation (BIO12), Precipitation Seasonality (BIO15) and Precipitation of Driest Quarter (BIO17), and the projected New Zealand distribution was broadly similar to that of Haemaphysalis longicornis Neumann, New Zealand’s only livestock tick, but with a more extensive predicted suitability. The climate change predictions for the year 2050 under both low and high RCP scenarios projected only moderate increases in habitat suitability along the mountain valleys in the South Island. In conclusion, this analysis shows that given the opportunity and license A. americanum could and would successfully establish in New Zealand and could provide another vector for theileriosis organisms.