Browsing by Author "Hayman DTS"
Now showing 1 - 20 of 58
Results Per Page
Sort Options
- ItemA novel, stain-free, natural auto-fluorescent signal, Sig M, identified from cytometric and transcriptomic analysis of infectivity of Cryptosporidium hominis and Cryptosporidium parvum.(Frontiers Media S.A., 2023-05-22) Ogbuigwe P; Roberts JM; Knox MA; Heiser A; Pita A; Haack NA; Garcia-Ramirez JC; Velathanthiri N; Biggs PJ; French NP; Hayman DTS; Xu RCryptosporidiosis is a worldwide diarrheal disease caused by the protozoan Cryptosporidium. The primary symptom is diarrhea, but patients may exhibit different symptoms based on the species of the Cryptosporidium parasite they are infected with. Furthermore, some genotypes within species are more transmissible and apparently virulent than others. The mechanisms underpinning these differences are not understood, and an effective in vitro system for Cryptosporidium culture would help advance our understanding of these differences. Using COLO-680N cells, we employed flow cytometry and microscopy along with the C. parvum-specific antibody Sporo-Glo™ to characterize infected cells 48 h following an infection with C. parvum or C. hominis. The Cryptosporidium parvum-infected cells showed higher levels of signal using Sporo-Glo™ than C. hominis-infected cells, which was likely because Sporo-Glo™ was generated against C. parvum. We found a subset of cells from infected cultures that expressed a novel, dose-dependent auto-fluorescent signal that was detectable across a range of wavelengths. The population of cells that expressed this signal increased proportionately to the multiplicity of infection. The spectral cytometry results confirmed that the signature of this subset of host cells closely matched that of oocysts present in the infectious ecosystem, pointing to a parasitic origin. Present in both C. parvum and C. hominis cultures, we named this Sig M, and due to its distinct profile in cells from both infections, it could be a better marker for assessing Cryptosporidium infection in COLO-680N cells than Sporo-Glo™. We also noted Sig M's impact on Sporo-Glo™ detection as Sporo-Glo™ uses fluoroscein-isothiocynate, which is detected where Sig M also fluoresces. Lastly, we used NanoString nCounter® analysis to investigate the transcriptomic landscape for the two Cryptosporidium species, assessing the gene expression of 144 host and parasite genes. Despite the host gene expression being at high levels, the levels of putative intracellular Cryptosporidium gene expression were low, with no significant difference from controls, which could be, in part, explained by the abundance of uninfected cells present as determined by both Sporo-Glo™ and Sig M analyses. This study shows for the first time that a natural auto-fluorescent signal, Sig M, linked to Cryptosporidium infection can be detected in infected host cells without any fluorescent labeling strategies and that the COLO-680N cell line and spectral cytometry could be useful tools to advance the understanding of Cryptosporidium infectivity.
- ItemA review and analysis of cryptosporidiosis outbreaks in New Zealand.(Cambridge University Press, 2023-06-01) Garcia-R JC; Hayman DTSCryptosporidium is a leading global cause of diarrhoea with many reported outbreaks related to water and zoonotic transmission. This study summarizes data from Public Health Surveillance reports since 2010 in New Zealand to describe exposures associated with human diarrhoea outbreaks caused by Cryptosporidium. We investigate the species and subtypes of cases involved in some of the outbreaks to elucidate transmission routes and the predominant aetiological agents of cryptosporidiosis. For the period 2010–2017, 318 cryptosporidiosis outbreaks were reported in New Zealand resulting in 1634 cases and 20 hospitalizations. The most important mode of transmission was person-to-person (primary infections and secondary or close contacts infections), relating to 260 outbreaks and 1320 cases, followed by 113 outbreaks associated with animals, resulting in 436 human cases. From 2018 to 2021, there were 37 cryptosporidiosis outbreaks associated with 324 cases. We identified the subtypes by using polymerase chain reaction targeting the gp60 gene and the likelihood of mixed subtype infections with the Tracking of Indels by DEcomposition (TIDE) algorithm. Subtype families Ib and Ig of Cryptosporidium hominis and IIa and IId of Cryptosporidium parvum were found among cases; however, C. hominis subtypes occurred in 8 of the 11 outbreaks reviewed where molecular data were available. Examination of the chromatograms showed no mixed subtype infections in the samples assessed. Subtyping data need to be routinely incorporated into national surveillance programmes to better understand the epidemiology, sources, transmission and extent of cryptosporidiosis outbreaks in New Zealand. Our study highlights the value of integrating epidemiological information and molecular typing to investigate and manage clusters of cryptosporidiosis cases.
- ItemAbsence of Cryptosporidium hominis and dominance of zoonotic Cryptosporidium species in patients after Covid-19 restrictions in Auckland, New Zealand(Cambridge University Press, 2021-09) Knox MA; Garcia-R JC; Ogbuigwe P; Pita A; Velathanthiri N; Hayman DTSCoronavirus disease-2019 (Covid-19) nonpharmaceutical interventions have proven effective control measures for a range of respiratory illnesses throughout the world. These measures, which include isolation, stringent border controls, physical distancing and improved hygiene also have effects on other human pathogens, including parasitic enteric diseases such as cryptosporidiosis. Cryptosporidium infections in humans are almost entirely caused by two species: C. hominis, which is primarily transmitted from human to human, and Cryptosporidium parvum, which is mainly zoonotic. By monitoring Cryptosporidium species and subtype families in human cases of cryptosporidiosis before and after the introduction of Covid-19 control measures in New Zealand, we found C. hominis was completely absent after the first months of 2020 and has remained so until the beginning of 2021. Nevertheless, C. parvum has followed its typical transmission pattern and continues to be widely reported. We conclude that ~7 weeks of isolation during level 3 and 4 lockdown period interrupted the human to human transmission of C. hominis leaving only the primarily zoonotic transmission pathway used by C. parvum. Secondary anthroponotic transmission of C. parvum remains possible among close contacts of zoonotic cases. Ongoing 14-day quarantine measures for new arrivals to New Zealand have likely suppressed new incursions of C. hominis from overseas. Our findings suggest that C. hominis may be controlled or even eradicated through nonpharmaceutical interventions.
- ItemAbundant dsRNA picobirnaviruses show little geographic or host association in terrestrial systems.(Elsevier, 2023-08) Knox MA; Wierenga J; Biggs PJ; Gedye K; Almeida V; Hall R; Kalema-Zikusoka G; Rubanga S; Ngabirano A; Valdivia-Granda W; Hayman DTSPicobirnaviruses are double-stranded RNA viruses known from a wide range of host species and locations but with unknown pathogenicity and host relationships. Here, we examined the diversity of picobirnaviruses from cattle and gorillas within and around Bwindi Impenetrable Forest National Park (BIFNP), Uganda, where wild and domesticated animals and humans live in relatively close contact. We use metagenomic sequencing with bioinformatic analyses to examine genetic diversity. We compared our findings to global Picobirnavirus diversity using clustering-based analyses. Picobirnavirus diversity at Bwindi was high, with 14 near-complete RdRp and 15 capsid protein sequences, and 497 new partial viral sequences recovered from 44 gorilla samples and 664 from 16 cattle samples. Sequences were distributed throughout a phylogenetic tree of globally derived picobirnaviruses. The relationship with Picobirnavirus diversity and host taxonomy follows a similar pattern to the global dataset, generally lacking pattern with either host or geography.
- ItemAddressing the challenges of implementing evidence-based prioritisation in global health.(BMJ Publishing Group Ltd, 2023-08-02) Hayman DTS; Barraclough RK; Muglia LJ; McGovern V; Afolabi MO; N'Jai AU; Ambe JR; Atim C; McClelland A; Paterson B; Ijaz K; Lasley J; Ahsan Q; Garfield R; Chittenden K; Phelan AL; Lopez Rivera A; Abimbola SGlobal health requires evidence-based approaches to improve health and decrease inequalities. In a roundtable discussion between health practitioners, funders, academics and policy-makers, we recognised key areas for improvement to deliver better-informed, sustainable and equitable global health practices. These focus on considering information-sharing mechanisms and developing evidence-based frameworks that take an adaptive function-based approach, grounded in the ability to perform and respond to prioritised needs. Increasing social engagement as well as sector and participant diversity in whole-of-society decision-making, and collaborating with and optimising on hyperlocal and global regional entities, will improve prioritisation of global health capabilities. Since the skills required to navigate drivers of pandemics, and the challenges in prioritising, capacity building and response do not sit squarely in the health sector, it is essential to integrate expertise from a broad range of fields to maximise on available knowledge during decision-making and system development. Here, we review the current assessment tools and provide seven discussion points for how improvements to implementation of evidence-based prioritisation can improve global health.
- ItemAntibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa(Public Library of Science, 2011) Hayman DTS; Wang L-F; Barr J; Baker KS; Suu-Ire R; Broder CC; Cunningham AA; Wood JLNHenipaviruses, Hendra virus (HeV) and Nipah virus (NiV), have Pteropid bats as their known natural reservoirs. Antibodies against henipaviruses have been found in Eidolon helvum, an old world fruit bat species, and henipavirus-like nucleic acid has been detected in faecal samples from E. helvum in Ghana. The initial outbreak of NiV in Malaysia led to over 265 human encephalitis cases, including 105 deaths, with infected pigs acting as amplifier hosts for NiV during the outbreak. We detected non-neutralizing antibodies against viruses of the genus Henipavirus in approximately 5% of pig sera (N = 97) tested in Ghana, but not in a small sample of other domestic species sampled under a E. helvum roost. Although we did not detect neutralizing antibody, our results suggest prior exposure of the Ghana pig population to henipavirus(es). Because a wide diversity of henipavirus-like nucleic acid sequences have been found in Ghanaian E. helvum, we hypothesise that these pigs might have been infected by henipavirus(es) sufficiently divergent enough from HeVor NiV to produce cross-reactive, but not cross-neutralizing antibodies to HeV or NiV.
- ItemBat Flight and Zoonotic Viruses(Centers for Disease Control and Prevention, 2014) O Shea TJ; Cryan PM; Cunningham AA; Fooks AR; Hayman DTS; Luis AD; Peel AJ; Plowright RK; Wood JLNBats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.
- ItemBat trait, genetic and pathogen data from large-scale investigations of African fruit bats, Eidolon helvum.(1/08/2016) Peel AJ; Baker KS; Hayman DTS; Suu-Ire R; Breed AC; Gembu G-C; Lembo T; Fernández-Loras A; Sargan DR; Fooks AR; Cunningham AA; Wood JLNBats, including African straw-coloured fruit bats (Eidolon helvum), have been highlighted as reservoirs of many recently emerged zoonotic viruses. This common, widespread and ecologically important species was the focus of longitudinal and continent-wide studies of the epidemiological and ecology of Lagos bat virus, henipaviruses and Achimota viruses. Here we present a spatial, morphological, demographic, genetic and serological dataset encompassing 2827 bats from nine countries over an 8-year period. Genetic data comprises cytochrome b mitochondrial sequences (n=608) and microsatellite genotypes from 18 loci (n=544). Tooth-cementum analyses (n=316) allowed derivation of rare age-specific serologic data for a lyssavirus, a henipavirus and two rubulaviruses. This dataset contributes a substantial volume of data on the ecology of E. helvum and its viruses and will be valuable for a wide range of studies, including viral transmission dynamic modelling in age-structured populations, investigation of seasonal reproductive asynchrony in wide-ranging species, ecological niche modelling, inference of island colonisation history, exploration of relationships between island and body size, and various spatial analyses of demographic, morphometric or serological data.
- ItemBehavior of bats at wind turbines(National Academy of Sciences, 2014) Cryan PM; Gorresen PM; Hein CD; Schirmacher M; Diehl R; Huso M; Hayman DTS; Fricker P; Bonaccorso F; Johnston D; Heist K; Dalton DWind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.ines.
- ItemBiotic impacts of energy development from shale: Research priorities and knowledge gaps(ECOLOGICAL SOC AMER, 1/01/2014) Souther S; Tingley MW; Popescu VD; Hayman DTS; Ryan ME; Graves TA; Hartl B; Terrell KAlthough shale drilling operations for oil and natural gas have increased greatly in the past decade, few studies directly quantify the impacts of shale development on plants and wildlife. We evaluate knowledge gaps related to shale development and prioritize research needs using a quantitative framework that includes spatial and temporal extent, mitigation difficulty, and current level of understanding. Identified threats to biota from shale development include: surface and groundwater contamination; diminished stream flow; stream siltation; habitat loss and fragmentation; localized air, noise, and light pollution; climate change; and cumulative impacts. We find the highest research priorities to be probabilistic threats (underground chemical migration; contaminant release during storage, during disposal, or from accidents; and cumulative impacts), the study of which will require major scientific coordination among researchers, industry, and government decision makers. Taken together, our research prioritization outlines a way forward to better understand how energy development affects the natural world. © The Ecological Society of America.
- ItemBody mass and hibernation microclimate may predict bat susceptibility to white-nose syndrome(John Wiley and Sons, Ltd, 7/01/2021) Haase CG; Fuller NW; Dzal YA; Hranac CR; Hayman DTS; Lausen CL; Silas KA; Olson SH; Plowright RKIn multihost disease systems, differences in mortality between species may reflect variation in host physiology, morphology, and behavior. In systems where the pathogen can persist in the environment, microclimate conditions, and the adaptation of the host to these conditions, may also impact mortality. White-nose syndrome (WNS) is an emerging disease of hibernating bats caused by an environmentally persistent fungus, Pseudogymnoascus destructans. We assessed the effects of body mass, torpid metabolic rate, evaporative water loss, and hibernaculum temperature and water vapor deficit on predicted overwinter survival of bats infected by P. destructans. We used a hibernation energetics model in an individual-based model framework to predict the probability of survival of nine bat species at eight sampling sites across North America. The model predicts time until fat exhaustion as a function of species-specific host characteristics, hibernaculum microclimate, and fungal growth. We fit a linear model to determine relationships with each variable and predicted survival and semipartial correlation coefficients to determine the major drivers in variation in bat survival. We found host body mass and hibernaculum water vapor deficit explained over half of the variation in survival with WNS across species. As previous work on the interplay between host and pathogen physiology and the environment has focused on species with narrow microclimate preferences, our view on this relationship is limited. Our results highlight some key predictors of interspecific survival among western bat species and provide a framework to assess impacts of WNS as the fungus continues to spread into western North America.
- ItemCan survival analyses detect hunting pressure in a highly connected species? Lessons from straw-coloured fruit bats.(2016-08) Hayman DTS; Peel AJAnimal behaviour, social structure and population dynamics affect community structure, interspecific interactions, and a species' resilience to harvesting. Building on new life history information for the straw-coloured fruit bat (Eidolon helvum) from multiple localities across Africa, we used survival analyses based on tooth-cementum annuli data to test alternative hypotheses relating to hunting pressure, demography and population connectivity. The estimated annual survival probability across Africa was high (≥ 0.64), but was greatest in colonies with the highest proportion of males. This difference in sex survival, along with age and sex capture biases and out-of-phase breeding across the species' distribution, leads us to hypothesize that E. helvum has a complex social structure. We found no evidence for additive mortality in heavily hunted populations, with most colonies having high survival with constant risk of mortality despite different hunting pressure. Given E. helvum's slow life history strategy, similar survival patterns and rate among colonies suggest that local movement and regional migration may compensate for local excess hunting, but these were also not clearly detected. Our study suggests that spatio-temporal data are necessary to appropriately assess the population dynamics and conservation status of this and other species with similar traits.
- ItemClassification of Bartonella strains associated with straw-colored fruit bats (Eidolon helvum) across Africa using a multi-locus sequence typing platform.(PUBLIC LIBRARY SCIENCE, 2015-01) Bai Y; Hayman DTS; McKee CD; Kosoy MYBartonellae are facultative intracellular bacteria and are highly adapted to their mammalian host cell niches. Straw-colored fruit bats (Eidolon helvum) are commonly infected with several bartonella strains. To elucidate the genetic diversity of these bartonella strains, we analyzed 79 bartonella isolates from straw-colored fruit bats in seven countries across Africa (Cameroon, Annobon island of Equatorial Guinea, Ghana, Kenya, Nigeria, Tanzania, and Uganda) using a multi-locus sequencing typing (MLST) approach based on nucleotide sequences of eight loci (ftsZ, gltA, nuoG, ribC, rpoB, ssrA, ITS, and 16S rRNA). The analysis of each locus but ribC demonstrated clustering of the isolates into six genogroups (E1 - E5 and Ew), while ribC was absent in the isolates belonging to the genogroup Ew. In general, grouping of all isolates by each locus was mutually supportive; however, nuoG, gltA, and rpoB showed some incongruity with other loci in several strains, suggesting a possibility of recombination events, which were confirmed by network analyses and recombination/mutation rate ratio (r/m) estimations. The MLST scheme revealed 45 unique sequence types (ST1 - 45) among the analyzed bartonella isolates. Phylogenetic analysis of concatenated sequences supported the discrimination of six phylogenetic lineages (E1 - E5 and Ew) corresponding to separate and unique Bartonella species. One of the defined lineages, Ew, consisted of only two STs (ST1 and ST2), and comprised more than one-quarter of the analyzed isolates, while other lineages contained higher numbers of STs with a smaller number of isolates belonging to each lineage. The low number of allelic polymorphisms of isolates belonging to Ew suggests a more recent origin for this species. Our findings suggest that at least six Bartonella species are associated with straw-colored fruit bats, and that distinct STs can be found across the distribution of this bat species, including in populations of bats which are genetically distinct.
- ItemClinical parameters of hypervirulent Klebsiella pneumoniae disease and ivermectin treatment in New Zealand sea lion (Phocarctos hookeri) pups(PLOS, 2022-03-03) Michael SA; Hayman DTS; Gray R; Roe WD; Raverty SHypervirulent Klebsiella pneumoniae infection causes significant mortality of endangered New Zealand sea lion pups at Enderby Island, Auckland Islands. Gross necropsy and histopathology findings are well reported, but little is known about the clinical course of disease in affected pups. To determine factors feasible as clinical screening tools for hypervirulent K. pneumoniae in live pups, 150 pups over two field seasons (2016-18) were recruited shortly after birth for a prospective cohort study. A randomised controlled clinical treatment trial with the anthelmintic ivermectin was conducted concurrently and risk factor data and biological samples were collected approximately fortnightly. Treatment with ivermectin has been demonstrated to reduce the risk of hypervirulent K. pneumoniae mortality in pups, so effects on clinical parameters between the treated and control cohorts were also investigated. A broader sample of pups were monitored for clinical signs to investigate the course of disease in affected pups. Clinical signs, haematology and oral and rectal swabs to detect gastrointestinal carriage of hypervirulent K. pneumoniae were not useful for detection of disease prior to death. Of those pups that died due to hypervirulent K. pneumoniae, only 26.1% (18/69) had any clinical signs prior, likely a reflection of the peracute course of disease. On comparison of haematological parameters between ivermectin-treated and control pups, significantly lower total plasma protein and higher eosinophil counts were seen in control versus treated pups, however standard length as a surrogate for age was a more important influence on parameters overall than ivermectin treatment. This study also highlighted a cohort of pups with severe clinical signs suggestive of hypervirulent K. pneumoniae infection were lost to follow up at the end of the monitored season, which could be contributing to cryptic juvenile mortality.
- ItemCommunity health and human-animal contacts on the edges of Bwindi Impenetrable National Park, Uganda(PLOS, 2021-11-24) Muylaert RL; Davidson B; Ngabirano A; Kalema-Zikusoka G; MacGregor H; Lloyd-Smith JO; Fayaz A; Knox MA; Hayman DTS; Fèvre ECross-species transmission of pathogens is intimately linked to human and environmental health. With limited healthcare and challenging living conditions, people living in poverty may be particularly susceptible to endemic and emerging diseases. Similarly, wildlife is impacted by human influences, including pathogen sharing, especially for species in close contact with people and domesticated animals. Here we investigate human and animal contacts and human health in a community living around the Bwindi Impenetrable National Park (BINP), Uganda. We used contact and health survey data to identify opportunities for cross-species pathogen transmission, focusing mostly on people and the endangered mountain gorilla. We conducted a survey with background questions and self-reported diaries to investigate 100 participants' health, such as symptoms and behaviours, and contact patterns, including direct contacts and sightings over a week. Contacts were revealed through networks, including humans, domestic, peri-domestic, and wild animal groups for 1) contacts seen in the week of background questionnaire completion, and 2) contacts seen during the diary week. Participants frequently felt unwell during the study, reporting from one to 10 disease symptoms at different intensity levels, with severe symptoms comprising 6.4% of the diary records and tiredness and headaches the most common symptoms. After human-human contacts, direct contact with livestock and peri-domestic animals were the most common. The contact networks were moderately connected and revealed a preference in contacts within the same taxon and within their taxa groups. Sightings of wildlife were much more common than touching. However, despite contact with wildlife being the rarest of all contact types, one direct contact with a gorilla with a timeline including concerning participant health symptoms was reported. When considering all interaction types, gorillas mostly exhibited intra-species contact, but were found to interact with five other species, including people and domestic animals. Our findings reveal a local human population with recurrent symptoms of illness in a location with intense exposure to factors that can increase pathogen transmission, such as direct contact with domestic and wild animals and proximity among animal species. Despite significant biases and study limitations, the information generated here can guide future studies, such as models for disease spread and One Health interventions.
- ItemCommunity health and human-animal contacts on the edges of Bwindi Impenetrable National Park, Uganda (preprint)(2021-07-23) Muylaert RL; Davidson B; Ngabirano A; Kalema-Zikusoka G; MacGregor H; Lloyd-Smith JO; Fayaz A; Knox MA; Hayman DTS
- ItemContinent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses(MacMillan Publishers Ltd., 2013) Peel AJ; Sargan DR; Baker KS; Hayman DTS; Barr JA; Crameri G; Suu-Ire R; Broder CC; Lembo T; Wang L-F; Fooks AR; Rossiter SJ; Wood JLN; Cunningam AAThe straw-coloured fruit bat, Eidolon helvum, is Africa’s most widely distributed and commonly hunted fruit bat, often living in close proximity to human populations. This species has been identified as a reservoir of potentially zoonotic viruses, but uncertainties remain regarding viral transmission dynamics and mechanisms of persistence. Here we combine genetic and serological analyses of populations across Africa, to determine the extent of epidemiological connectivity among E. helvum populations. Multiple markers reveal panmixia across the continental range, at a greater geographical scale than previously recorded for any other mammal, whereas populations on remote islands were genetically distinct. Multiple serological assays reveal antibodies to henipaviruses and Lagos bat virus in all locations, including small isolated island populations, indicating that factors other than population size and connectivity may be responsible for viral persistence. Our findings have potentially important public health implications, and highlight a need to avoid disturbances that may precipitate viral spillover.
- ItemDeveloping One Health surveillance systems(Elsevier B.V., 2023-12-01) Hayman DTS; Adisasmito WB; Almuhairi S; Behravesh CB; Bilivogui P; Bukachi SA; Casas N; Becerra NC; Charron DF; Chaudhary A; Ciacci Zanella JR; Cunningham AA; Dar O; Debnath N; Dungu B; Farag E; Gao GF; Khaitsa M; Machalaba C; Mackenzie JS; Markotter W; Mettenleiter TC; Morand S; Smolenskiy V; Zhou L; Koopmans MThe health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system.
- ItemDevelopment of a non-infectious control for viral hemorrhagic fever PCR assays.(PLOS, 2024-04-22) Knox MA; Bromhead C; Hayman DTS; Viennet EAssay validation is an essential component of disease surveillance testing, but can be problematic in settings where access to positive control material is limited and a safety risk for handlers. Here we describe a single non-infectious synthetic control that can help develop and validate the PCR based detection of the viral causes of Crimean-Congo hemorrhagic fever, Ebola virus disease, Lassa fever, Marburg virus disease and Rift Valley fever. We designed non-infectious synthetic DNA oligonucleotide sequences incorporating primer binding sites suitable for five assays, and a T7 promotor site which was used to transcribe the sequence. Transcribed RNA was used as template in a dilution series, extracted and amplified with RT-PCR and RT-qPCR to demonstrate successful recovery and determine limits of detection in a range of laboratory settings. Our results show this approach is adaptable to any diagnostic assay requiring validation of nucleic acid extraction and/or amplification, particularly where sourcing reliable, safe material for positive controls is infeasible.
- ItemDiagnosis of protozoa diarrhoea in Campylobacter patients increases markedly with molecular techniques.(Public Library of Science (PLoS), 2023-05-30) Hayman DTS; Garcia-Ramirez JC; Pita A; Velathanthiri N; Knox MA; Ogbuigwe P; Baker MG; Rostami K; Deroles-Main J; Gilpin BJ; Standley CCryptosporidium and Giardia are major causes of diarrhoea globally, and two of the most notified infectious diseases in New Zealand. Diagnosis requires laboratory confirmation carried out mostly via antigen or microscopy-based techniques. However, these methods are increasingly being superseded by molecular techniques. Here we investigate the level of protozoa detection by molecular methods in campylobacteriosis cases missed through antigen-based assays and investigate different molecular testing protocols. We report findings from two observational studies; the first among 111 people during a Campylobacter outbreak and the second during normal surveillance activities among 158 people presenting with diarrhoea and a positive Campylobacter test, but negative Cryptosporidium and Giardia antigen-based test results. The molecular methods used for comparison were in-house end-point PCR tests targeting the gp60 gene for Cryptosporidium and gdh gene for Giardia. DNA extraction was performed with and without bead-beating and comparisons with commercial real-time quantitative (qPCR) were made using clinical Cryptosporidium positive sample dilutions down to 10-5. The Cryptosporidium prevalence was 9% (95% CI: 3-15; 10/111) and Giardia prevalence 21% (95% CI: 12-29; 23/111) in the 111 Campylobacter outbreak patients. The Cryptosporidium prevalence was 40% (95% CI: 32-48; 62/158) and Giardia prevalence 1.3% (95% CI: 0.2-4.5; 2/158) in the 158 routine surveillance samples. Sequencing identified Cryptosporidium hominis, C. parvum, and Giardia intestinalis assemblages A and B. We found no statistical difference in positive test results between samples using end-point PCR with or without bead-beating prior to DNA extraction, or between the in-house end-point PCR and qPCR. The qPCR Ct value was 36 (95% CI: 35-37) for 1 oocyst, suggesting a high limit of detection. In conclusion in surveillance and outbreak situations we found diagnostic serology testing underdiagnoses Cryptosporidium and Giardia coinfections in Campylobacter patients, suggesting the impact of protozoa infections may be underestimated through underdiagnosis using antigen-based assays.
- «
- 1 (current)
- 2
- 3
- »