Browsing by Author "Han Z"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA Study of the Interaction, Morphology, and Structure in Trypsin-Epigallocatechin-3-Gallate Complexes(MDPI (Basel, Switzerland), 2021-07-28) Liu J; Ghanizadeh H; Li X; Han Z; Qiu Y; Zhang Y; Chen X; Wang A; Tresserra-Rimbau A; Bresciani LUnderstanding the interaction between proteins and polyphenols is of significance to food industries. The aim of this research was to investigate the mode of aggregation for trypsin-EGCG (Epigallocatechin-3-gallate) complexes. For this, the complex was characterized by fluorescence spectroscopy, circular dichroism (CD) spectra, small-angel X-ray scattering (SAXS), and atomic force microscope (AFM) techniques. The results showed that the fluorescence intensity of trypsin-EGCG complexes decreased with increasing the concentration of EGCG, indicating that the interaction between trypsin and EGCG resulted in changes in the microenvironment around fluorescent amino acid residues. The results of CD analysis showed conformational changes in trypsin after binding with EGCG. The results from SAXS analysis showed that the addition of EGCG results in the formation of aggregates of trypsin-EGCG complexes, and increasing the concentration of EGCG resulted in larger aggregates. AFM images showed that the trypsin-EGCG complex formed aggregates of irregular ellipsoidal shapes with the size of about 200 × 400 × 200 nm, with EGCG interconnecting the trypsin particles. Overall, according to these results, it was concluded that the large aggregates of trypsin-EGCG complexes are formed from several small aggregates that are interconnected. The results of this study shed some light on the interaction between digestive enzymes and EGCG.
- ItemClonostachys rosea Promotes Root Growth in Tomato by Secreting Auxin Produced through the Tryptamine Pathway(MDPI (Basel, Switzerland), 2022-11-04) Han Z; Ghanizadeh H; Zhang H; Li X; Li T; Wang Q; Liu J; Wang A; Feng M-GClonostachys rosea (Link) Schroers is a filamentous fungus that has been widely used for biological control, biological fermentation, biodegradation and bioenergy. In this research, we investigated the impact of this fungus on root growth in tomato and the underlying mechanisms. The results showed that C. rosea can promote root growth in tomato, and tryptophan enhances its growth-promoting impacts. The results also showed that tryptophan increases the abundance of metabolites in C. rosea, with auxin (IAA) and auxin-related metabolites representing a majority of the highly abundant metabolites in the presence of tryptophan. It was noted that C. rosea could metabolize tryptophan into tryptamine (TRA) and indole-3-acetaldehyde (IAAId), and these two compounds are used by C. rosea to produce IAA through the tryptamine (TAM) pathway, which is one of the major pathways in tryptophan-dependent IAA biosynthesis. The IAA produced is used by C. rosea to promote root growth in tomato. To the best of our knowledge, this is the first report on IAA biosynthesis by C. rosea through the TAM pathway. More research is needed to understand the molecular mechanisms underlying IAA biosynthesis in C. rosea, as well as to examine the ability of this fungus to boost plant development in the field.