Browsing by Author "Guillon F"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLM6-M: A high avidity rat monoclonal antibody to pectic α-1,5-L-arabinan(10/07/2017) Cornuault VRG; Buffetto F; Marcus SE; Crepeau MJ; Guillon F; Ralet MC; Knox JP1,5-arabinan is an abundant structural feature of side chains of pectic rhamnogalacturonan-I which is a matrix constituent of plant cell walls. The study of arabinan in cells and tissues is driven by putative roles for this polysaccharide in the generation of cell wall and organ mechanical properties. The biological function(s) of arabinan is still uncertain and high quality molecular tools are required to detect its occurrence and monitor its dynamics. Here we report a new rat monoclonal antibody, LM6-M, similar in specificity to the published rat monoclonal antibody LM6 (Willats et al. (1998) Carbohydrate Research 308: 149-152). LM6-M is of the IgM immunoglobulin class and has a higher avidity for α-1-5-L-arabinan than LM6. LM6-M displays high sensitivity in its detection of arabinan in in-vitro assays such as ELISA and epitope detection chromatography and in in-situ analyses.
- ItemThe deconstruction of pectic rhamnogalacturonan I unmasks the occurrence of a novel arabinogalactan oligosaccharide epitope(Oxford University Press (OUP), 1/11/2015) Buffetto F; Cornuault VRG; Rydahl MG; Ropartz D; Alvarado C; Echasserieau V; Le Gall S; Bouchet B; Tranquet O; Verhertbruggen Y; Willats WGT; Knox JP; Ralet MC; Guillon FRhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.