Browsing by Author "Gray-Stuart E"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDoes flute angle influence box performance?(Springer Nature, 2023-09-23) Wade K; Todoroki C; Jamsari A; Gray-Stuart E; Tohill S; Bronlund J; Parker KIn the production of boxes, it is customary to align the flutes vertically, corresponding to a 0° flute angle. This configuration is widely believed to yield optimal compressive strength, despite existing evidence from corrugated flute boards and boxes that challenge this assumption. The present study investigates the hypothesis that non-vertical flute angles do not significantly compromise box compression strength and may potentially offer enhancements in other performance characteristics. Regular slotted container boxes (385 × 238 × 300 mm) constructed from single wall C-flute board were used in this study. Ten flute angles were selected for box level testing: 0°, 5°, 7.5°, 10°, 12.5°, 15°, 20°, 30°, 45° and 60°. Samples of converted board were subjected to edge crush testing (ECT) following TAPPI T-811 and four-point-bending following TAPPI T-820. Box crush testing (BCT) followed NZS 1301.800 2006 (New Zealand Standard). Component testing results were consistent with previous studies. Outcomes showed a general linear reduction in ECT with increasing flute angle, and nonlinear relationships between flute angle and bending force and stiffness. At the box level, peak load did not decline significantly between 0° and 45°, however 60° flute angles had significantly lower peak loads (α = 0.05). At certain angles, notably 10° and 30°, less variation in peak load was observed. BCT force and stiffness of the box significantly improved in terms of median and variation at 10° and 30°. Therefore, a flute angle of less than 45° does not significantly reduce compression strength.
- ItemModelling the role of oral processing on in vivo aroma release of white rice: Conceptual model and experimental validation(Elsevier Ltd, 2021-04) How MS; Jones JR; Morgenstern MP; Gray-Stuart E; Bronlund JE; Saint-Eve A; Trelea IC; Souchon IA conceptual model was developed to relate oral processing parameters and aroma release of cooked white rice. The conceptual model indicates that aroma release is dependent on the increase of particle surface area, the dilution effect of saliva and the diffusion of aroma from food residues that can be trapped in the buccal-pouches in the mouth. The model was validated against in vivo retro-nasal aroma release data during the consumption of rice flavoured with two aroma compounds (2-nonanone and ethyl propanoate) by five panellists. The oral processing behaviour of each subject was characterised at four different stages during oral processing by measuring bolus particle size, saliva content and the amount of residue particles that could be washed from the mouth after bolus expectoration. The results showed that aroma release for all subjects were dependent on the particle breakdown pathways used in oral processing. Subjects who reduced the rice to smaller particle sizes, higher pasted fraction and higher bolus residues had higher aroma release as expected from the conceptual model. Accounting for the physiological variables of subjects, the physicochemical parameters of aroma compounds and using a larger number of subjects in future studies will improve the model reliability.