Browsing by Author "Ghosh S"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAntigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation(Nature Publishing Group, 2016-01) Daniels NJ; Hyde E; Ghosh S; Seo K; Price KM; Hoshino K; Kaisho T; Okada T; Ronchese FAllergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13. In addition, treatment with specific CTLs also increased the proportion of caspase+ dendritic cells (DCs) in mediastinal lymph node (MLN), and decreased the numbers of CD103+ and CD11b+ DCs in the lung. This decrease required expression of the cytotoxic mediator perforin in CTLs and of the appropriate MHC-antigen ligand on DCs, suggesting that direct CTL-DC contact was necessary. Lastly, lung imaging experiments revealed that in airway-challenged mice XCR1-GFP+ DCs, corresponding to the CD103+ DC subset, and XCR1-GFP− CD11c+ cells, which include CD11b+ DCs and alveolar macrophages, both clustered in the areas surrounding the small airways and were closely associated with allergen-specific CTLs. Thus, allergen-specific CTLs reduce allergic airway inflammation by depleting CD103+ and CD11b+ DC populations in the lung, and may constitute a mechanism through which allergic immune responses are regulated.
- ItemGenomic Variability of Canine Parvoviruses from a Selected Population of Dogs and Cats in Sri Lanka(MDPI (Basel, Switzerland), 2021-08-29) Jinadasa R; Ghosh S; Hills S; Premalal T; Atapattu U; Fuward M; Kalupahana W; Dunowska M; Gunn-Moore D; Aguiar DMDThe aim of the study was to identify canine parvovirus type 2 (CPV-2) subtypes circulating among a selected population of domestic dogs and cats in Sri Lanka and to investigate the evolutionary patterns among Sri Lankan viruses in the context of contemporary global CPV-2 sequences. Altogether, 40/61 (65.6%) samples tested were positive for CPV-2 DNA, including 31/48 (64.6%) dogs and 9/13 (69%) cats. All three subtypes (CPV-2a, CPV-2b and CPV-2c) were detected, with CPV-2a being most common. International median joining haplotype network of 291 CPV-2 sequences suggested that there was little barrier for CPV-2 moving between different geographical regions worldwide, including Sri Lanka, and that there was no correlation between the genetic structure within the molecular network and the decade of sample collection. By contrast, there was correlation between CPV-2 subtype and genetic structure, both within the international network and within the network built from 31 Sri Lankan CPV-2 sequences only. The structure within the latter was not correlated with the location of the veterinary clinic where the samples were submitted, the age or species of the host. Altogether, we have shown that there is considerable variability of CPV-2 genotypes circulating in Sri Lanka, which is likely driven by both local evolution and introduction from other countries. The similarity of CPV-2 obtained from cats and dogs suggests that cats may play a role in the epidemiology of CPV-2 in Sri Lanka.
- ItemIn Vitro Effects of Doxycycline on Replication of Feline Coronavirus(MDPI AG, 7/03/2021) Ghosh S; Dunowska MFeline infectious peritonitis (FIP) is a sporadic fatal disease of cats caused by a virulent variant of feline coronavirus (FCoV), referred to as FIP virus (FIPV). Treatment options are limited, and most of the affected cats die or are euthanized. Anecdotally, doxycycline has been used to treat FIP-affected cats, but there are currently no data to support or discourage such treatment. The aim of this study was to establish whether doxycycline inhibits replication of FIPV in vitro. The virus was cultured in Crandell-Rees feline kidney cells with various concentrations of doxycycline (0 to 50 µg/mL). The level of FIPV in cultures was determined by virus titration and FCoV-specific reverse-transcription quantitative PCR. Cell viability was also monitored. There was no difference in the level of infectious virus or viral RNA between doxycycline-treated and untreated cultures at 3, 12- and 18-hours post-infection. However, at 24 h, the growth of FIPV was inhibited by approximately two logs in cultures with >10 µg/mL doxycycline. This inhibition was dose-dependent, with inhibitory concentration 50% (IC50) 4.1 µg/mL and IC90 5.4 µg/mL. Our data suggest that doxycycline has some inhibitory effect on FIPV replication in vitro, which supports future clinical trials of its use for the treatment of FIP-affected cats.
- ItemVirucidal Efficacy of Blue LED and Far-UVC Light Disinfection against Feline Infectious Peritonitis Virus as a Model for SARS-CoV-2(MDPI (Basel, Switzerland), 2021-08) Gardner A; Ghosh S; Dunowska M; Brightwell G; Tannock G; Kim HTransmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs through respiratory droplets passed directly from person to person or indirectly through fomites, such as common use surfaces or objects. The aim of this study was to determine the virucidal efficacy of blue LED (405 nm) and far-UVC (222 nm) light in comparison to standard UVC (254 nm) irradiation for the inactivation of feline infectious peritonitis virus (FIPV) on different matrices as a model for SARS-CoV-2. Wet or dried FIPV on stainless steel, plastic, or paper discs, in the presence or absence of artificial saliva, were exposed to various wavelengths of light for different time periods (1-90 min). Dual activity of blue LED and far-UVC lights were virucidal for most wet and dried FIPV within 4 to 16 min on all matrices. Individual action of blue LED and far-UVC lights were virucidal for wet FIPV but required longer irradiation times (8-90 min) to reach a 4-log reduction. In comparison, LED (265 nm) and germicidal UVC (254 nm) were virucidal on almost all matrices for both wet and dried FIPV within 1 min exposure. UVC was more effective for the disinfection of surfaces as compared to blue LED and far-UVC individually or together. However, dual action of blue LED and far-UVC was virucidal. This combination of lights could be used as a safer alternative to traditional UVC.