Browsing by Author "Galland BC"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNourishing the Infant Gut Microbiome to Support Immune Health: Protocol of SUN (Seeding Through Feeding) Randomized Controlled Trial.(JMIR Publications, 2024-09-02) Wall CR; Roy NC; Mullaney JA; McNabb WC; Gasser O; Fraser K; Altermann E; Young W; Cooney J; Lawrence R; Jiang Y; Galland BC; Fu X; Tonkie JN; Mahawar N; Lovell AL; Ma SBackground: The introduction of complementary foods during the first year of life influences the diversity of the gut microbiome. How this diversity affects immune development and health is unclear. Objective: This study evaluates the effect of consuming kūmara or kūmara with added banana powder (resistant starch) compared to a reference control at 4 months post randomization on the prevalence of respiratory tract infections and the development of the gut microbiome. Methods: This study is a double-blind, randomized controlled trial of mothers and their 6-month-old infants (up to n=300) who have not yet started solids. Infants are randomized into one of 3 groups: control arm (C), standard kūmara intervention (K), and a kūmara intervention with added banana powder product (K+) to be consumed daily for 4 months until the infant is approximately 10 months old. Infants are matched for sex using stratified randomization. Data are collected at baseline (prior to commencing solid food) and at 2 and 4 months after commencing solid food (at around 8 and 10 months of age). Data and samples collected at each timepoint include weight and length, intervention adherence (months 2 and 4), illness and medication history, dietary intake (months 2 and 4), sleep (diary and actigraphy), maternal dietary intake, breast milk, feces (baseline and 4 months), and blood samples (baseline and 4 months). Results: The trial was approved by the Health and Disability Ethics Committee of the Ministry of Health, New Zealand (reference 20/NTA/9). Recruitment and data collection did not commence until January 2022 due to the COVID-19 pandemic. Data collection and analyses are expected to conclude in January 2024 and early 2025, respectively. Results are to be published in 2024 and 2025. Conclusions: The results of this study will help us understand how the introduction of a specific prebiotic complementary food affects the microbiota and relative abundances of the microbial species, the modulation of immune development, and infant health. It will contribute to the expanding body of research that aims to deepen our understanding of the connections between nutrition, gut microbiota, and early-life postnatal health. Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN12620000026921; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=378654 International Registered Report Identifier (IRRID): DERR1-10.2196/56772 JMIR Res Protoc 2024;13:e56772
- ItemThe effect of mild sleep deprivation on diet and eating behaviour in children: protocol for the Daily Rest, Eating, and Activity Monitoring (DREAM) randomized cross-over trial(BioMed Central Ltd, 2019-10-22) Ward AL; Galland BC; Haszard JJ; Meredith-Jones K; Morrison S; McIntosh DR; Jackson R; Beebe DW; Fangupo L; Richards R; Te Morenga L; Smith C; Elder DE; Taylor RWBACKGROUND: Although insufficient sleep has emerged as a strong, independent risk factor for obesity in children, the mechanisms by which insufficient sleep leads to weight gain are uncertain. Observational research suggests that being tired influences what children eat more than how active they are, but only experimental research can determine causality. Few experimental studies have been undertaken to determine how reductions in sleep duration might affect indices of energy balance in children including food choice, appetite regulation, and sedentary time. The primary aim of this study is to objectively determine whether mild sleep deprivation increases energy intake in the absence of hunger. METHODS: The Daily, Rest, Eating, and Activity Monitoring (DREAM) study is a randomized controlled trial investigating how mild sleep deprivation influences eating behaviour and activity patterns in children using a counterbalanced, cross-over design. One hundred and ten children aged 8-12 years, with normal reported sleep duration of 8-11 h per night will undergo 2 weeks of sleep manipulation; seven nights of sleep restriction by going to bed 1 hr later than usual, and seven nights of sleep extension going to bed 1 hr earlier than usual, separated by a washout week. During each experimental week, 24-h movement behaviours (sleep, physical activity, sedentary behaviour) will be measured via actigraphy; dietary intake and context of eating by multiple 24-h recalls and wearable camera images; and eating behaviours via objective and subjective methods. At the end of each experimental week a feeding experiment will determine energy intake from eating in the absence of hunger. Differences between sleep conditions will be determined to estimate the effects of reducing sleep duration by 1-2 h per night. DISCUSSION: Determining how insufficient sleep predisposes children to weight gain should provide much-needed information for improving interventions for the effective prevention of obesity, thereby decreasing long-term morbidity and healthcare burden. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12618001671257 . Registered 10 October 2018.