Browsing by Author "Dufek J"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDestructiveness of pyroclastic surges controlled by turbulent fluctuations(Springer Nature Limited on behalf of Nature Portfolio, 2021-12-15) Brosch E; Lube G; Cerminara M; Esposti-Ongaro T; Breard ECP; Dufek J; Sovilla B; Fullard LPyroclastic surges are lethal hazards from volcanoes that exhibit enormous destructiveness through dynamic pressures of 100–102 kPa inside flows capable of obliterating reinforced buildings. However, to date, there are no measurements inside these currents to quantify the dynamics of this important hazard process. Here we show, through large-scale experiments and the first field measurement of pressure inside pyroclastic surges, that dynamic pressure energy is mostly carried by large-scale coherent turbulent structures and gravity waves. These perpetuate as low-frequency high-pressure pulses downcurrent, form maxima in the flow energy spectra and drive a turbulent energy cascade. The pressure maxima exceed mean values, which are traditionally estimated for hazard assessments, manifold. The frequency of the most energetic coherent turbulent structures is bounded by a critical Strouhal number of ~0.3, allowing quantitative predictions. This explains the destructiveness of real-world flows through the development of c. 1–20 successive high-pressure pulses per minute. This discovery, which is also applicable to powder snow avalanches, necessitates a re-evaluation of hazard models that aim to forecast and mitigate volcanic hazard impacts globally.
- ItemTurbulent particle-gas feedback exacerbates the hazard impacts of pyroclastic density currents(Springer Nature Limited, 2024-05-09) Uhle DH; Lube G; Breard ECP; Meiburg E; Dufek J; Ardo J; Jones JR; Brosch E; Corna LRP; Jenkins SF; Doronzo D; Aslin JCausing one-third of all volcanic fatalities, pyroclastic density currents create destruction far beyond our current scientific explanation. Opportunities to interrogate the mechanisms behind this hazard have long been desired, but pyroclastic density currents persistently defy internal observation. Here we show, through direct measurements of destruction-causing dynamic pressure in large-scale experiments, that pressure maxima exceed theoretical values used in hazard assessments by more than one order of magnitude. These distinct pressure excursions occur through the clustering of high-momentum particles at the peripheries of coherent turbulence structures. Particle loading modifies these eddies and generates repeated high-pressure loading impacts at the frequency of the turbulence structures. Collisions of particle clusters against stationary objects generate even higher dynamic pressures that account for up to 75% of the local flow energy. To prevent severe underestimation of damage intensities, these multiphase feedback processes must be considered in hazard models that aim to mitigate volcanic risk globally.