Browsing by Author "Douglas J"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGenomic epidemiology of Delta SARS-CoV-2 during transition from elimination to suppression in Aotearoa New Zealand(Springer Nature Limited, 2022-07-12) Jelley L; Douglas J; Ren X; Winter D; McNeill A; Huang S; French N; Welch D; Hadfield J; de Ligt J; Geoghegan JLNew Zealand's COVID-19 elimination strategy heavily relied on the use of genomics to inform contact tracing, linking cases to the border and to clusters during community outbreaks. In August 2021, New Zealand entered its second nationwide lockdown after the detection of a single community case with no immediately apparent epidemiological link to the border. This incursion resulted in the largest outbreak seen in New Zealand caused by the Delta Variant of Concern. Here we generated 3806 high quality SARS-CoV-2 genomes from cases reported in New Zealand between 17 August and 1 December 2021, representing 43% of reported cases. We detected wide geographical spread coupled with undetected community transmission, characterised by the apparent extinction and reappearance of genomically linked clusters. We also identified the emergence, and near replacement, of genomes possessing a 10-nucleotide frameshift deletion that caused the likely truncation of accessory protein ORF7a. By early October, New Zealand moved from an elimination strategy to a suppression strategy and the role of genomics changed markedly from being used to track and trace, towards population-level surveillance.
- ItemTracing the international arrivals of SARS-CoV-2 Omicron variants after Aotearoa New Zealand reopened its border(Springer Nature Limited, 2022-10-29) Douglas J; Winter D; McNeill A; Carr S; Bunce M; French N; Hadfield J; de Ligt J; Welch D; Geoghegan JLIn the second quarter of 2022, there was a global surge of emergent SARS-CoV-2 lineages that had a distinct growth advantage over then-dominant Omicron BA.1 and BA.2 lineages. By generating 10,403 Omicron genomes, we show that Aotearoa New Zealand observed an influx of these immune-evasive variants (BA.2.12.1, BA.4, and BA.5) through the border. This is explained by the return to significant levels of international travel following the border's reopening in March 2022. We estimate one Omicron transmission event from the border to the community for every ~5,000 passenger arrivals at the current levels of travel and restriction. Although most of these introductions did not instigate any detected onward transmission, a small minority triggered large outbreaks. Genomic surveillance at the border provides a lens on the rate at which new variants might gain a foothold and trigger new waves of infection.