Browsing by Author "Christophersen A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDeveloping, Testing, and Communicating Earthquake Forecasts: Current Practices and Future Directions(American Geophysical Union, 2024-09-01) Mizrahi L; Dallo I; van der Elst NJ; Christophersen A; Spassiani I; Werner MJ; Iturrieta P; Bayona J; Iervolino I; Schneider M; Page MT; Zhuang J; Herrmann M; Michael AJ; Falcone G; Marzocchi W; Rhoades D; Gerstenberger M; Gulia L; Schorlemmer D; Becker J; Han M; Kuratle L; Marti M; Wiemer SWhile deterministically predicting the time and location of earthquakes remains impossible, earthquake forecasting models can provide estimates of the probabilities of earthquakes occurring within some region over time. To enable informed decision-making of civil protection, governmental agencies, or the public, Operational Earthquake Forecasting (OEF) systems aim to provide authoritative earthquake forecasts based on current earthquake activity in near-real time. Establishing OEF systems involves several nontrivial choices. This review captures the current state of OEF worldwide and analyzes expert recommendations on the development, testing, and communication of earthquake forecasts. An introductory summary of OEF-related research is followed by a description of OEF systems in Italy, New Zealand, and the United States. Combined, these two parts provide an informative and transparent snapshot of today's OEF landscape. In Section 4, we analyze the results of an expert elicitation that was conducted to seek guidance for the establishment of OEF systems. The elicitation identifies consensus and dissent on OEF issues among a non-representative group of 20 international earthquake forecasting experts. While the experts agree that communication products should be developed in collaboration with the forecast user groups, they disagree on whether forecasting models and testing methods should be user-dependent. No recommendations of strict model requirements could be elicited, but benchmark comparisons, prospective testing, reproducibility, and transparency are encouraged. Section 5 gives an outlook on the future of OEF. Besides covering recent research on earthquake forecasting model development and testing, upcoming OEF initiatives are described in the context of the expert elicitation findings.
- ItemLong-term communication of aftershock forecasts: The Canterbury earthquake sequence in New Zealand(Elsevier Ltd., 2024-10-21) Wein AM; McBride SK; Becker JS; Christophersen A; Doyle EEH; Gerstenberger MC; Potter SHOn 14 February 2016, a magnitude (M)5.7 earthquake struck in Christchurch New Zealand (Aotearoa in the Maori language). The shaking caused damage to historic facades, power outages, cliff collapses, rock falls, and liquefaction but no reported injuries or fatalities. This Valentine's Day earthquake was an aftershock in the Canterbury earthquake sequence (CES), which began on 4 September 2010 with the M7.1 Darfield Earthquake and included the destructive and fatal M6.2 Christchurch aftershock on 22 February 2011. This study, eight months after the Valentine's Day earthquake and six years after the initiation of the CES, is the first to explore long-term aftershock forecast information and communication needs. The exploratory study also aimed to gather feedback on aftershock scenarios, an alternative form for communicating the forecast. The qualitative study involved workshops with emergency managers, public health officials, and members of the public in Christchurch. Key findings for long-term communication throughout an earthquake sequence include: 1. divergent earthquake experiences affect aftershock communication response and information needs; 2. understanding aftershock sequence behavior is foundational to sense-making when large aftershocks occur; 3. strategic earthquake sequence updates from the trusted science agency and local agencies could serve as important reminders for earthquake preparedness; 4. communication of aftershock forecast uncertainty could aid with both the credibility of the information and living with uncertainty, and 5. inclusion of impact information and preparedness advice into aftershock forecast scenarios could provide links to actionable information. The paper derives implications for research and practice of long-term communications during an aftershock sequence.