Browsing by Author "Buckley RM"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA Deletion in GDF7 is Associated with a Heritable Forebrain Commissural Malformation Concurrent with Ventriculomegaly and Interhemispheric Cysts in Cats(MDPI (Basel, Switzerland), 2020-06-19) Yu Y; Creighton EK; Buckley RM; Lyons LA; 99 Lives ConsortiumAn inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation, concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test and a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats, by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasized the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.
- ItemA domestic cat whole exome sequencing resource for trait discovery(Springer Nature Limited, 2021-03-30) Rodney AR; Buckley RM; Fulton RS; Fronick C; Richmond T; Helps CR; Pantke P; Trent DJ; Vernau KM; Munday JS; Lewin AC; Middleton R; Lyons LA; Warren WCOver 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model.
- ItemMining the 99 Lives Cat Genome Sequencing Consortium database implicates genes and variants for the Ticked locus in domestic cats (Felis catus)(John Wiley and Sons Ltd on behalf of Stichting International Foundation for Animal Genetics, 2021-06) Lyons LA; Buckley RM; Harvey RJ; 99 Lives Cat Genome ConsortiumTabby patterns of fur coats are defining characteristics in wild and domestic felids. Historically, three autosomal alleles at one locus (Tabby): Abyssinian (Ta ; a.k.a. ticked), mackerel (Tm ; a.k.a. striped) and blotched (tb ; a.k.a. classic, blotched) were thought to control these patterns in domestic cats and their breeds. Currently, at least three loci influence cat tabby markings, two of which are designated Tabby and Ticked. The Tabby locus is laeverin (LVRN) and affects the mackerel and blotched patterns. The unidentified gene for the Ticked locus on cat chromosome B1 was suggested to control the presence or absence of the ticked pattern (Tabby - Abyssinian (Ta ; a.k.a. ticked). The cat reference genome (Cinnamon, the Abyssinian) has the ticked phenotype and the variant dataset and coat phenotypes from the 99 Lives Cat Genome Consortium (195 cats) were used to identify candidate genes and variants associated with the Ticked locus. Two strategies were used to find the Ticked allele(s), one considered Cinnamon with the reference allele or heterozygous (Strategy A) and the other considered Cinnamon as having the variant allele or heterozygous (Strategy B). For Strategy A, two variants in Dickkopf Wnt Signaling Pathway Inhibitor 4 (DKK4), a p.Cys63Tyr (B1:41621481, c.188G>A) and a less common p.Ala18Val (B1:42620835, c.53C>T) variant are suggested as two alleles influencing the Ticked phenotype. Bioinformatic and molecular modeling analysis suggests that these changes disrupt a key disulfide bond in the Dkk4 cysteine-rich domain 1 or Dkk4 signal peptide cleavage respectively. All coding variants were excluded as Ticked alleles using Strategy B.
- ItemWerewolf, There Wolf: Variants in Hairless Associated with Hypotrichia and Roaning in the Lykoi Cat Breed.(MDPI (Basel, Switzerland), 2020-06-22) Buckley RM; Gandolfi B; Creighton EK; Pyne CA; Bouhan DM; LeRoy ML; Senter DA; Gobble JR; Abitbol M; Lyons LA; 99 Lives ConsortiumA variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non-lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.
- ItemX-linked myotubular myopathy associated with an MTM1 variant in a Maine coon cat(Wiley Periodicals LLC on behalf of American College of Veterinary Internal Medicine, 2022-09-26) Kopke MA; Shelton GD; Lyons LA; Wall MJ; Pemberton S; Gedye KR; Owen R; Guo LT; Buckley RM; Valencia JA; 99 Lives Consortium; Jones BROBJECTIVE: Describe the clinical course and diagnostic and genetic findings in a cat with X-linked myotubular myopathy. CASE SUMMARY: A 7-month-old male Maine coon was evaluated for progressively worsening gait abnormalities and generalized weakness. Neurolocalization was to the neuromuscular system. Genetic testing for spinal muscular atrophy (LIX1) was negative. Given the progressive nature and suspected poor long-term prognosis, the owners elected euthanasia. Histopathology of skeletal muscle obtained post-mortem disclosed numerous rounded atrophic or hypotrophic fibers with internal nuclei or central basophilic staining. Using oxidative reactions mediated by cytochrome C oxidase and succinic dehydrogenase, scattered myofibers were observed to have central dark staining structures and a "ring-like" appearance. Given the cat's age and clinical history, a congenital myopathy was considered most likely, with the central nuclei and "ring-like" changes consistent with either centronuclear or myotubular myopathy. Whole genome sequencing identified an underlying missense variant in myotubularin 1 (MTM1), a known candidate gene for X-linked myotubular myopathy. NEW OR UNIQUE INFORMATION PROVIDED: This case is the first report of X-linked myotubular myopathy in a cat with an MTM1 missense mutation. Maine coon cat breeders may consider screening for this variant to prevent production of affected cats and to eradicate the variant from the breeding population.