Browsing by Author "Bozza V"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemAn analysis of binary microlensing event OGLE-2015-BLG-0060(Oxford University Press on behalf of the Royal Astronomical Society, 2019-08) Tsapras Y; Cassan A; Ranc C; Bachelet E; Street R; Udalski A; Hundertmark M; Bozza V; Beaulieu JP; Marquette JB; Euteneuer E; Bramich DM; Dominik M; Figuera Jaimes R; Horne K; Mao S; Menzies J; Schmidt R; Snodgrass C; Steele IA; Wambsganss J; Mróz P; Szymański MK; Soszyński I; Skowron J; Pietrukowicz P; Kozłowski S; Poleski R; Ulaczyk K; Pawlak M; Jørgensen UG; Skottfelt J; Popovas A; Ciceri S; Korhonen H; Kuffmeier M; Evans DF; Peixinho N; Hinse TC; Burgdorf MJ; Southworth J; Tronsgaard R; Kerins E; Andersen MI; Rahvar S; Wang Y; Wertz O; Rabus M; Calchi Novati S; D'Ago G; Scarpetta G; Mancini L; Abe F; Asakura Y; Bennett DP; Bhattacharya A; Donachie M; Evans P; Fukui A; Hirao Y; Itow Y; Kawasaki K; Koshimoto N; Li MCA; Ling CH; Masuda K; Matsubara Y; Muraki Y; Miyazaki S; Nagakane M; Ohnishi K; Rattenbury N; Saito T; Sharan A; Shibai H; Sullivan DJ; Sumi T; Suzuki D; Tristram PJ; Yamada T; Yonehara A; The RoboNet team; The OGLE collaboration; The MiNDSTEp collaboration; The MOA collaborationWe present the analysis of stellar binary microlensing event OGLE-2015-BLG-0060 based on observations obtained from 13 different telescopes. Intensive coverage of the anomalous parts of the light curve was achieved by automated follow-up observations from the robotic telescopes of the Las Cumbres Observatory. We show that, for the first time, all main features of an anomalous microlensing event are well covered by follow-up data, allowing us to estimate the physical parameters of the lens. The strong detection of second-order effects in the event light curve necessitates the inclusion of longer-baseline survey data in order to constrain the parallax vector. We find that the event was most likely caused by a stellar binary-lens with masses M = 0.87 pm 0.12 mathrm{M} and M = 0.77 pm 0.11 mathrm{M}. The distance to the lensing system is 6.41 ± 0.14 kpc and the projected separation between the two components is 13.85 ± 0.16 au. Alternative interpretations are also considered.
- ItemAn Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing(IOP Publishing on behalf of the American Astronomical Society, 2022-07-06) Sahu KC; Anderson J; Casertano S; Bond HE; Udalski A; Dominik M; Calamida A; Bellini A; Brown TM; Rejkuba M; Bajaj V; Kains N; Ferguson HC; Fryer CL; Yock P; Mróz P; Kozłowski S; Pietrukowicz P; Poleski R; Skowron J; Soszyński I; Szymański MK; Ulaczyk K; Wyrzykowski Ł; Barry RK; Bennett DP; Bond IA; Hirao Y; Silva SI; Kondo I; Koshimoto N; Ranc C; Rattenbury NJ; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Beaulieu J-P; Marquette J-B; Cole A; Fouqué P; Hill K; Dieters S; Coutures C; Dominis-Prester D; Bennett C; Bachelet E; Menzies J; Albrow M; Pollard K; Gould A; Yee JC; Allen W; Almeida LA; Christie G; Drummond J; Gal-Yam A; Gorbikov E; Jablonski F; Lee C-U; Maoz D; Manulis I; McCormick J; Natusch T; Pogge RW; Shvartzvald Y; Jørgensen UG; Alsubai KA; Andersen MI; Bozza V; Novati SC; Burgdorf M; Hinse TC; Hundertmark M; Husser T-O; Kerins E; Longa-Peña P; Mancini L; Penny M; Rahvar S; Ricci D; Sajadian S; Skottfelt J; Snodgrass C; Southworth J; Tregloan-Reed J; Wambsganss J; Wertz O; Tsapras Y; Street RA; Bramich DM; Horne K; Steele IAWe report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t E ≃ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462 (hereafter designated as MOA-11-191/OGLE-11-462), in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of 6 yr, reveals a clear relativistic astrometric deflection of the background star's apparent position. Ground-based photometry of MOA-11-191/OGLE-11-462 shows a parallactic signature of the effect of Earth's motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 ± 1.3 M ⊙ and a distance of 1.58 ± 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic disk stars at similar distances by an amount corresponding to a transverse space velocity of �1/445 km s-1, suggesting that the BH received a "natal kick"from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial velocity measurements of Galactic X-ray binaries and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first for an isolated stellar-mass BH using any technique.
- ItemBrown dwarf companions in microlensing binaries detected during the 2016-2018 seasons(EDP Sciences on behalf of the European Southern Observatory, 2022-11-08) Han C; Ryu Y-H; Shin I-G; Jung YK; Kim D; Hirao Y; Bozza V; Albrow MD; Zang W; Udalski A; Bond IA; Chung S-J; Gould A; Hwang K-H; Shvartzvald Y; Yang H; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Yee JC; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Silva SI; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Itow YAims. With the aim of finding microlensing binaries containing brown dwarf (BD) companions, we investigate the microlensing survey data collected during the 2016 2018 seasons. Methods. For this purpose, we first modeled lensing events with light curves exhibiting anomaly features that are likely to be produced by binary lenses. We then sorted out BD companion binary-lens events by applying the criterion that the companion-to-primary mass ratio is q 0.1. With this procedure, we identify six binaries with candidate BD companions: OGLE-2016-BLG-0890L, MOA-2017-BLG-477L, OGLE-2017-BLG-0614L, KMT-2018-BLG-0357L, OGLE-2018-BLG-1489L, and OGLE-2018-BLG-0360L. Results. We estimated the masses of the binary companions by conducting Bayesian analyses using the observables of the individual lensing events. According to the Bayesian estimation of the lens masses, the probabilities for the lens companions of the events OGLE-2016-BLG-0890, OGLE-2017-BLG-0614, OGLE-2018-BLG-1489, and OGLE-2018-BLG-0360 to be in the BD mass regime are very high with PBD > 80%. For MOA-2017-BLG-477 and KMT-2018-BLG-0357, the probabilities are relatively low with PBD = 61% and 69%, respectively.
- ItemFour microlensing giant planets detected through signals produced by minor-image perturbations(EDP Sciences on behalf of The European Southern Observatory, 2024-07) Han C; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Bachelet E; Rota P; Bozza V; Zielinski P; Street RA; Tsapras Y; Hundertmark M; Wambsganss J; Wyrzykowski Ł; Jaimes RF; Cassan A; Dominik M; Rybicki KA; Rabus MAims. We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves. Methods. We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics. Results. The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are (Mhost/M☉, Mplanet/MJ, q/10−3, DL/kpc) = (0.58−+00.3033, 10.71−+56.6117, 17.61 ± 2.25, 6.67+−01.9330) for KMT-2020-BLG-0757, (0.53+−00.3131, 1.12+−00.6565, 2.01 ± 0.07, 6.66+−11.1984) for KMT-2022-BLG-0732, (0.42−+00.2332, 6.64−+43.9864, 15.07 ± 0.86, 7.55+−01.8930) for KMT-2022-BLG-1787, and (0.32+−00.3419, 4.98+−52.4294, 8.74 ± 0.49, 6.27+−01.9015) for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun.
- ItemFour sub-Jovian-mass planets detected by high-cadence microlensing surveys(EDP Sciences on behalf of the European Southern Observatory, 2022-08-05) Han C; Kim D; Gould A; Udalski A; Bond IA; Bozza V; Jung YK; Albrow MD; Chung S-J; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Zang W; Cha S-M; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozaowski S; Ulaczyk K; Rybicki KA; Iwanek P; Abe F; Barry RK; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Koshimoto N; Kondo I; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Okamura A; Ranc C; Rattenbury NJ; Satoh Y; Silva SI; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama HAims. With the aim of finding short-term planetary signals, we investigated the data collected from current high-cadence microlensing surveys. Methods. From this investigation, we found four planetary systems with low planet-to-host mass ratios, including OGLE-2017-BLG-1691L, KMT-2021-BLG-0320L, KMT-2021-BLG-1303L, and KMT-2021-BLG-1554L. Despite the short durations, ranging from a few hours to a couple of days, the planetary signals were clearly detected by the combined data of the lensing surveys. We found that three of the planetary systems have mass ratios on the order of 10-4 and the other has a mass ratio that is slightly greater than 10-3. Results. The estimated masses indicate that all discovered planets have sub-Jovian masses. The planet masses of KMT-2021-BLG-0320Lb, KMT-2021-BLG-1303Lb, and KMT-2021-BLG-1554Lb correspond to ∼0.10, ∼0.38, and ∼0.12 times the mass of the Jupiter, and the mass of OGLE-2017-BLG-1691Lb corresponds to that of the Uranus. The estimated mass of the planet host KMT-2021-BLG-1554L, Mhost ∼ 0.08 M⊙, corresponds to the boundary between a star and a brown dwarf. Besides this system, the host stars of the other planetary systems are low-mass stars with masses in the range of ∼[0.3-0.6] M⊙. The discoveries of the planets fully demonstrate the capability of the current high-cadence microlensing surveys in detecting low-mass planets.
- ItemMOA-2020-BLG-208Lb: Cool Sub-Saturn-mass Planet within Predicted Desert(American Astronomical Society, 2023-03) Olmschenk G; Bennett DP; Bond IA; Zang W; Jung YK; Yee JC; Bachelet E; Abe F; Barry RK; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Silva SI; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Munford B; Muraki Y; Okamura A; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Albrow MD; Cha S-M; Chung S-J; Gould A; Han C; Hwang K-H; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Ryu Y-H; Shin I-G; Shvartzvald Y; Christie G; Cooper T; Drummond J; Green J; Hennerley S; McCormick J; Monard LAG; Natusch T; Porritt I; Tan T-G; Mao S; Maoz D; Penny MT; Zhu W; Bozza V; Cassan A; Dominik M; Hundertmark M; Jaimes RF; Kruszyńska K; Rybicki KA; Street RA; Tsapras Y; Wambsganss J; Wyrzykowski L; Zieliński P; Rau GWe analyze the MOA-2020-BLG-208 gravitational microlensing event and present the discovery and characterization of a new planet, MOA-2020-BLG-208Lb, with an estimated sub-Saturn mass. With a mass ratio q=3.17-0.26+0.28×10-4, the planet lies near the peak of the mass-ratio function derived by the MOA collaboration and near the edge of expected sample sensitivity. For these estimates we provide results using two mass-law priors: one assuming that all stars have an equal planet-hosting probability, and the other assuming that planets are more likely to orbit around more massive stars. In the first scenario, we estimate that the lens system is likely to be a planet of mass mplanet=46-24+42M⊕ and a host star of mass Mhost=0.43-0.23+0.39M⊙, located at a distance DL=7.49-1.13+0.99kpc . For the second scenario, we estimate mplanet=69-34+37M⊕, Mhost=0.66-0.32+0.35M⊙, and DL=7.81-0.93+0.93kpc . The planet has a projected separation as a fraction of the Einstein ring radius s=1.3807-0.0018+0.0018 . As a cool sub-Saturn-mass planet, this planet adds to a growing collection of evidence for revised planetary formation models
- ItemOGLE-2019-BLG-0825: Constraints on the Source System and Effect on Binary-lens Parameters Arising from a Five-day Xallarap Effect in a Candidate Planetary Microlensing Event(American Astronomical Society, 2023-08-18) Satoh YK; Koshimoto N; Bennett DP; Sumi T; Rattenbury NJ; Suzuki D; Miyazaki S; Bond IA; Udalski A; Gould A; Bozza V; Dominik M; Hirao Y; Kondo I; Kirikawa R; Hamada R; Abe F; Barry R; Bhattacharya A; Fujii H; Fukui A; Fujita K; Ikeno T; Ishitani Silva S; Itow Y; Matsubara Y; Matsumoto S; Muraki Y; Niwa K; Okamura A; Olmschenk G; Ranc C; Toda T; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Mróz P; Poleski R; Skowron J; Szymański MK; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Gromadzki M; Albrow MD; Chung S-J; Han C; Hwang K-H; Kim D; Jung YK; Kim HW; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Yee JC; Zang W; Cha S-M; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Jørgensen UG; Longa-Peña P; Sajadian S; Skottfelt J; Snodgrass C; Tregloan-Reed J; Bach-Møller N; Burgdorf M; D'Ago G; Haikala L; Hitchcock J; Hundertmark M; Khalouei E; Peixinho N; Rahvar S; Southworth J; Spyratos PWe present an analysis of microlensing event OGLE-2019-BLG-0825. This event was identified as a planetary candidate by preliminary modeling. We find that significant residuals from the best-fit static binary-lens model exist and a xallarap effect can fit the residuals very well and significantly improves χ 2 values. On the other hand, by including the xallarap effect in our models, we find that binary-lens parameters such as mass ratio, q, and separation, s, cannot be constrained well. However, we also find that the parameters for the source system such as the orbital period and semimajor axis are consistent between all the models we analyzed. We therefore constrain the properties of the source system better than the properties of the lens system. The source system comprises a G-type main-sequence star orbited by a brown dwarf with a period of P ∼5 days. This analysis is the first to demonstrate that the xallarap effect does affect binary-lens parameters in planetary events. It would not be common for the presence or absence of the xallarap effect to affect lens parameters in events with long orbital periods of the source system or events with transits to caustics, but in other cases, such as this event, the xallarap effect can affect binary-lens parameters.
- ItemProbable brown dwarf companions detected in binary microlensing events during the 2018- 2020 seasons of the KMTNet survey(EDP Sciences, 2023-07-04) Han C; Jung YK; Kim D; Gould A; Bozza V; Bond IA; Chung S-J; Albrow MD; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Zang W; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Yee JC; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Silva SI; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Itow YAims. We inspect the microlensing data of the KMTNet survey collected during the 2018-2020 seasons in order to find lensing events produced by binaries with brown dwarf (BD) companions. Methods. In order to pick out binary-lens events with candidate BD lens companions, we conducted systematic analyses of all anomalous lensing events observed during the seasons from 2018 to 2020. By applying a selection criterion of mass ratio between the lens components of 0.03 q 0.1, we identify four binary-lens events with candidate BD companions, namely KMT-2018-BLG-0321, KMT-2018-BLG-0885, KMT-2019-BLG-0297, and KMT-2019-BLG-0335. For the individual events, we present interpretations of the lens systems and measure the observables that can be used to constrain the physical lens parameters. Results. The masses of the lens companions estimated from the Bayesian analyses based on the measured observables indicate high probabilities that the lens companions are in the BD mass regime; that is, 59%, 68%, 66%, and 66% for the four respective events.
- ItemTerrestrial- and Neptune-mass Free-Floating Planet Candidates from the MOA-II 9 yr Galactic Bulge Survey(American Astronomical Society, 2023-08-16) Koshimoto N; Sumi T; Bennett DP; Bozza V; Mróz P; Udalski A; Rattenbury NJ; Abe F; Barry R; Bhattacharya A; Bond IA; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Kondo I; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Satoh Y; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KWe report the discoveries of low-mass free-floating planet (FFP) candidates from the analysis of 2006-2014 MOA-II Galactic bulge survey data. In this data set, we found 6111 microlensing candidates and identified a statistical sample consisting of 3535 high-quality single-lens events with Einstein radius crossing times in the range 0.057 < t E/days < 757, including 13 events that show clear finite-source effects with angular Einstein radii of 0.90 < θ E/μas < 332.54. Two of the 12 events with t E < 1 day have significant finite-source effects, and one event, MOA-9y-5919, with t E = 0.057 ± 0.016 days and θ E = 0.90 ± 0.14 μas, is the second terrestrial-mass FFP candidate to date. A Bayesian analysis indicates a lens mass of 0.75 − 0.46 + 1.23 M ⊕ for this event. The low detection efficiency for short-duration events implies a large population of low-mass FFPs. The microlensing detection efficiency for low-mass planet events depends on both the Einstein radius crossing times and the angular Einstein radii, so we have used image-level simulations to determine the detection efficiency dependence on both t E and θ E. This allows us to use a Galactic model to simulate the t E and θ E distribution of events produced by the known stellar populations and models of the FFP distribution that are fit to the data. Methods like this will be needed for the more precise FFP demographics determinations from Nancy Grace Roman Space Telescope data.