Browsing by Author "Bollard N"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA randomised controlled trial to evaluate the impact of indoor living space on dairy cow production, reproduction and behaviour(Springer Nature Limited, 2022-03-09) Thompson JS; Hudson CD; Huxley JN; Kaler J; Robinson RS; Woad KJ; Bollard N; Gibbons J; Green MJAs a global society, we have a duty to provide suitable care and conditions for farmed livestock to protect animal welfare and ensure the sustainability of our food supply. The suitability and biological impacts of housing conditions for intensively farmed animals is a complex and emotive subject, yet poorly researched, meaning quantitative evidence to inform policy and legislation is lacking. Most dairy cows globally are housed for some duration during the year, largely when climatic conditions are unfavourable. However, the impact on biology, productivity and welfare of even the most basic housing requirement, the quantity of living space, remains unknown. We conducted a long-term (1-year), randomised controlled trial (CONSORT 10 guidelines) to investigate the impact of increased living space (6.5 m2 vs 3 m2 per animal) on critical aspects of cow biology, behaviour and productivity. Adult Holstein dairy cows (n = 150) were continuously and randomly allocated to a high or control living space group with all other aspects of housing remaining identical between groups. Compared to cows in the control living space group, cows with increased space produced more milk per 305d lactation (primiparous: 12,235 L vs 11,592 L, P < 0.01; multiparous: 14,746 L vs 14,644 L, P < 0.01) but took longer to become pregnant after calving (primiparous: 155 d vs 83 d, P = 0.025; multiparous: 133 d vs 109 d). In terms of behaviour, cows with more living space spent significantly more time in lying areas (65 min/d difference; high space group: 12.43 h/day, 95% CI = 11.70-13.29; control space group: 11.42 h/day, 95% CI = 10.73-12.12) and significantly less time in passageways (64 min/d), suggesting enhanced welfare when more space was provided. A key physiological difference between groups was that cows with more space spent longer ruminating each day. This is the first long term study in dairy cows to demonstrate that increased living space results in meaningful benefits in terms of productivity and behaviour and suggests that the interplay between farmed animals and their housed environment plays an important role in the concepts of welfare and sustainability of dairy farming.
- ItemMorphology, adipocyte size, and fatty acid analysis of dairy cattle digital cushions, and the effect of body condition score and age(Elsevier Inc and Fass Inc on behalf of the American Dairy Science Association, 2021-05) Newsome RF; Mostyn A; Wilson JP; Alibhai A; Bollard N; Randall L; Chagunda MGG; Sturrock CJ; Keane M; Green M; Huxley JN; Rutland CSThe digital cushion is an essential part of maintaining a healthy foot, working to dissipate foot strike and body weight forces and lameness from claw horn disruption lesions. Despite the importance of the digital cushion, little is known about the basic anatomy, adipocyte morphology, and fatty acid composition in relation to age, limb position, and body condition score. In total, 60 claws (from 17 cows) were selected and collected from a herd, ensuring that body condition score data and computed micro-tomography were known for each animal. Digital cushion tissue underwent histological staining combined with stereology, systematic random sampling, and cell morphology analysis, in addition to lipid extraction followed by fatty acid analysis. The results describe digital cushion architecture and adipocyte sizes. Adipocyte size was similar across all 4 claws (distal left lateral and medial and distal right lateral and medial) and across the ages (aged 2–7 yr); however, animals with body condition score of 3.00 or more at slaughter had a significantly increased cell size in comparison to those with a score of less than 2.50. Of 37 fatty acid methyl esters identified, 5 differed between either the body condition score or different age groups. C10:0 capric acid, C14:0 myristic acid, C15:0 pentadecanoic acid, and C20:0 arachidic acid percentages were all lesser in lower body condition score cows, whereas C22:1n-9 erucic acid measurements were lesser in younger cows. Saturated fatty acid, monounsaturated fatty acid, and polyunsaturated fatty acid percentages were not altered in the different claws, ages, or body condition score groups. Triglyceride quantities did not differ for claw position or age but had decreased quantities in lower body condition score animals. Digital cushion anatomy, cellular morphology, and fatty acid composition have been described in general and also in animals with differing ages, body condition scores, and in the differing claws. Understanding fat deposition, mobilization, and composition are essential in not only understanding the roles that the digital cushion plays but also in preventing disorders and maintaining cattle health and welfare.