ATTENTION ALL DOCTORAL THESIS DEPOSITORS: There may be a problem with the Doctoral Thesis Deposit form, so please do not deposit your thesis until this alert has been removed. Our apologies for the acknowledged inconvenience. Many thanks for your patience.
Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Blagojevic R"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Towards an Explainable Machine Learning Framework for Sketched Diagram Recognition
    (CEUR-WS Team, 2023-01-01) Singh A; Imtiaz MA; Blagojevic R; Smith-Renner A; Taele P
    In recent years, machine learning has made significant advancements in various fields, including image recognition. However, the complexity of these models often makes it difficult for users to understand the reasoning behind their predictions. This is especially true for sketch recognition, where the ability to understand and explain the model's decision-making process is crucial. To address this issue, our research focuses on developing an explainable machine learning framework for sketch recognition. The framework incorporates techniques such as feature visualization and feature attribution methods which provide insights into the model's decision-making process. The goal of this research is to not only improve the performance of sketch recognition models but also to increase their interpretability, making them more usable and trustworthy for users.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings