Browsing by Author "Bermingham EN"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemComparison of gastrointestinal transit times in stabled Thoroughbred horses fed freshly cut pasture and three conserved forage-based diets(CSIRO Publishing, 2022-07) Fernandes KA; Rogers CW; Gee EK; Fitch G; Bolwell CF; Kittelmann S; Bermingham EN; Thomas DGContext: The type of forage offered to horses varies in physical form, moisture content and nutrient quality, and these variables could affect the intake, passage rate and digestibility of the forage consumed. Aims: To investigate the changes in passage rate of digesta through the gastrointestinal tract in horses fed four different forage-based diets (diet effect). Methods: Thoroughbred mares (n = 6) were stabled in loose boxes for 6 weeks. During Weeks 1, 3 and 5 (washout periods), all horses were fed freshly cut pasture, either in restricted quantities (Week 1) or ad libitum (Weeks 3 and 5). Using a 3 × 3 Latin square design during Weeks 2, 4 and 6, each pair of horses was abruptly transitioned to one of three conserved forage-based diets (chopped ensiled forage fed exclusively or with oats, or perennial ryegrass hay with oats) fed ad libitum. At the beginning of each week, indigestible polyethylene markers (n = 200) were administered to the horses via a nasogastric tube, followed immediately by transition to the new diet. Key results: There was a significant diet effect on the daily dry-matter intake of feed (P < 0.0001), percentage of time spent eating (P < 0.001), frequency of voiding faeces (P < 0.05) and quantity of faeces voided (P < 0.0001). There was a significant horse effect on the daily dry-matter intake of feed (P < 0.0001) and quantity of faeces voided (P < 0.0001), but no differences in the percentage of time spent eating or the frequency of voiding faeces. There were significant diet and horse effects on the time to recovery of the first marker in the faeces (P < 0.01 and P < 0.01 respectively) and the mean retention time of markers in the gastrointestinal tract (P < 0.05 and P < 0.001 respectively). Mean retention time was negatively correlated with feed intake and quantity of faeces voided (r2 =-0.51 and r2 =-0.64 respectively). Conclusions: Longer mean retention time was associated with a greater fibre content in the diet and a restricted feed supply, thus supporting the hypothesis that horses alter mean retention time on the basis of a nutrient absorption optimisation model. Implications: Feed composition, but also the quantities offered, may alter measurement of apparent feed digestibility in horses.
- ItemDevelopment and validation of an LC-MS/MS method for the quantification of oral-sugar probes in plasma to test small intestinal permeability and absorptive capacity in the domestic cat (Felis catus)(Elsevier BV, 2024-07-15) Patterson K; Fraser K; Bernstein D; Bermingham EN; Weidgraaf K; Kate Shoveller A; Thomas DA novel method for quantifying the concentration of lactulose, rhamnose, xylose, and 3-O-methylglucose (3-OMG) in cat plasma using liquid chromatography-mass spectrometry (LC-MS) was developed. Domestic male cats (n = 13) were orally dosed with a solution containing the four sugars to test the permeability and absorptive capacity of their intestinal barrier. Plasma samples were taken 3 h later and were prepared with acetonitrile (ACN), dried under N2, and reconstituted in 90 % ACN with 1 mM ammonium formate. Stable isotope labelled 13C standards for each analyte were used as internal standards. Chromatographic separation was conducted using a Phenomenex Luna NH2 column with a gradient elution system of deionized water and 90 % ACN with 1 mM ammonium formate at 300 µL/min for 13 min total analysis time. Recovery trials were conducted in triplicate over three days with RSD values (%) for each day ranging from 1.2 to 1.4 for lactulose, 5.4 - 6.0 for rhamnose, 3.3 - 5.5 for xylose, and 2.6 - 5.6 for 3-OMG. Inter-day variations for each analyte were not different (p > 0.05). Limit of detection and quantification were 0.2 and 0.7 µg/mL for lactulose, 0.8 and 2.4 µg/mL for rhamnose, 0.6 and 1.8 µg/mL for xylose, and 0.3 and 1.1 µg/mL for 3-OMG, respectively. Plasma sugar concentrations recovered from cats were above the limit of quantification and below the highest calibration standard, validating the use of this method to test intestinal permeability and absorptive capacity in cats.
- ItemDietary format alters fecal bacterial populations in the domestic cat (Felis catus)(John Wiley and Sons, 2013) Bermingham EN; Young W; Kittelmann S; Kerr KR; Swanson KS; Roy NC; Thomas DGThe effects of short-term (5-week) exposure to wet or dry diets on fecal bacterial populations in the cat were investigated. Sixteen mixed-sex, neutered, domestic short-haired cats (mean age = 6 years; mean bodyweight = 3.4 kg) were randomly allocated to wet or dry diets in a crossover design. Fecal bacterial DNA was isolated and bacterial 16S rRNA gene amplicons generated and analyzed by 454 Titanium pyrosequencing. Cats fed dry diets had higher abundances (P < 0.05) of Actinobacteria (16.5% vs. 0.1%) and lower abundances of Fusobacteria (0.3% vs. 23.1%) and Proteobacteria (0.4% vs. 1.1%) compared with cats fed the wet diet. Of the 46 genera identified, 30 were affected (P < 0.05) by diet, with higher abundances of Lactobacillus (31.8% vs. 0.1%), Megasphaera (23.0% vs. 0.0%), and Olsenella (16.4% vs. 0.0%), and lower abundances of Bacteroides (0.6% vs. 5.7%) and Blautia (0.3% vs. 2.3%) in cats fed the dry diet compared with cats fed the wet diet. These results demonstrate that short-term dietary exposure to diet leads to large shifts in fecal bacterial populations that have the potential to affect the ability of the cat to process macronutrients in the diet.
- ItemDrivers of Palatability for Cats and Dogs-What It Means for Pet Food Development(MDPI (Basel, Switzerland), 2023-03-23) Watson PE; Thomas DG; Bermingham EN; Schreurs NM; Parker ME; Biagi GThe pet food industry is an important sector of the pet care market that is growing rapidly. Whilst the number of new and innovative products continues to rise, research and development to assess product performance follows traditional palatability methodology. Pet food palatability research focuses on the amount of food consumed through use of one-bowl and two-bowl testing, but little understanding is given to why differences are observed, particularly at a fundamental ingredient level. This review will highlight the key differences in feeding behaviour and nutritional requirements between dogs and cats. The dominant pet food formats currently available and the ingredients commonly included in pet foods are also described. The current methods used for assessing pet food palatability and their limitations are outlined. The opportunities to utilise modern analytical methods to identify complete foods that are more palatable and understand the nutritional factors responsible for driving intake are discussed.
- ItemIn Vitro Assessment of Hydrolysed Collagen Fermentation Using Domestic Cat (Felis catus) Faecal Inocula(MDPI (Basel, Switzerland), 2022-02-17) Butowski CF; Thomas DG; Cave NJ; Bermingham EN; Rosendale DI; Hea S-Y; Stoklosinski HM; Young W; Ebani VVThe gastrointestinal microbiome has a range of roles in the host, including the production of beneficial fermentation end products such as butyrate, which are typically associated with fermentation of plant fibres. However, domestic cats are obligate carnivores and do not require carbohydrates. It has been hypothesised that in the wild, collagenous parts of prey-the so-called animal-derived fermentable substrates (ADFS) such as tendons and cartilage-may be fermented by the cat's gastrointestinal microbiome. However, little research has been conducted on ADFS in the domestic cat. Faecal inoculum was obtained from domestic cats either consuming a high carbohydrate (protein:fat:carbohydrate ratio of 35:20:28 (% dry matter basis)) or high protein (protein:fat:carbohydrate ratio of 75:19:1 (% dry matter basis)) diet. ADFS (hydrolysed collagen, cat hair, and cartilage) were used in a series of static in vitro digestions and fermentations. Concentrations of organic acids and ammonia were measured after 24 h of fermentation, and the culture community of microbes was characterised. The type of inoculum used affected the fermentation profile produced by the ADFS. Butyrate concentrations were highest when hydrolysed collagen was fermented with high protein inoculum (p < 0.05). In contrast, butyrate was not detectable when hydrolysed collagen was fermented in high carbohydrate inoculum (p < 0.05). The microbiome of the domestic cat may be able to ferment ADFS to provide beneficial concentrations of butyrate.
- ItemNutritional needs and health outcomes of ageing cats and dogs: is it time for updated nutrient guidelines?(Oxford University Press on behalf of the American Society of Animal Science, 2024-06-20) Bermingham EN; Patterson KA; Shoveller AK; Fraser K; Butowski CF; Thomas DGImplications • While cats are classed as senior at 10 years of chronological age, physiological and health changes occur from 8 years of age and it appears that diet may influence the ageing process. • Dogs are classed as senior at 12 years for smaller dogs and 10 years for larger breeds. Due to differences in longevity associated with breed size a definite age that dogs start to experience changes is difficult to establish. • Despite our pets ageing, living in extreme cases to 30 + years, there are no explicit nutritional guidelines for feeding ageing animals. Increased scientific knowledge around the specific nutritional requirements of ageing cats and dogs is required. • Many of the underlying physiological processes (e.g., immune function) and age-associated health conditions (e.g., cognitive decline) respond to nutritional intervention. This suggests that nutritional and regulatory guidelines, should consider recommendations for ‘senior+’ pets. • Due to the unique nutritional requirements of cats and dogs, more specific knowledge around the mechanisms of ageing is required.
- ItemResilience of Faecal Microbiota in Stabled Thoroughbred Horses Following Abrupt Dietary Transition between Freshly Cut Pasture and Three Forage-Based Diets(MDPI (Basel, Switzerland), 2021-09-06) Fernandes KA; Rogers CW; Gee EK; Kittelmann S; Bolwell CF; Bermingham EN; Biggs PJ; Thomas DG; Costa MThe management of competition horses in New Zealand often involves rotations of short periods of stall confinement and concentrate feeding, with periods of time at pasture. Under these systems, horses may undergo abrupt dietary changes, with the incorporation of grains or concentrate feeds to the diet to meet performance needs, or sudden changes in the type of forage fed in response to a lack of fresh or conserved forage. Abrupt changes in dietary management are a risk factor for gastrointestinal (GI) disturbances, potentially due to the negative effects observed on the population of GI microbiota. In the present study, the faecal microbiota of horses was investigated to determine how quickly the bacterial communities; (1) responded to dietary change, and (2) stabilised following abrupt dietary transition. Six Thoroughbred mares were stabled for six weeks, consuming freshly cut pasture (weeks 1, 3 and 5), before being abruptly transitioned to conserved forage-based diets, both offered ad libitum. Intestinal markers were administered to measure digesta transit time immediately before each diet change. The conserved forage-based diets were fed according to a 3 × 3 Latin square design (weeks 2, 4 and 6), and comprised a chopped ensiled forage fed exclusively (Diet FE) or with whole oats (Diet FE + O), and perennial ryegrass hay fed with whole oats (Diet H + O). Faecal samples were collected at regular intervals from each horse following the diet changes. High throughput 16S rRNA gene sequencing was used to evaluate the faecal microbiota. There were significant differences in alpha diversity across diets (p < 0.001), and a significant effect of diet on the beta diversity (ANOSIM, p = 0.001), with clustering of samples observed by diet group. There were differences in the bacterial phyla across diets (p < 0.003), with the highest relative abundances observed for Firmicutes (62 - 64%) in the two diets containing chopped ensiled forage, Bacteroidetes (32-38%) in the pasture diets, and Spirochaetes (17%) in the diet containing hay. Major changes in relative abundances of faecal bacteria appeared to correspond with the cumulative percentage of intestinal markers retrieved in the faeces as the increasing amounts of digesta from each new diet transited the animals. A stable faecal microbiota profile was observed in the samples from 96 h after abrupt transition to the treatment diets containing ensiled chopped forage. The present study confirmed that the diversity and community structure of the faecal bacteria in horses is diet-specific and resilient following dietary transition and emphasised the need to have modern horse feeding management that reflects the ecological niche, particularly by incorporating large proportions of forage into equine diets.
- ItemSeasonal Variation in the Faecal Microbiota of Mature Adult Horses Maintained on Pasture in New Zealand(MDPI (Basel, Switzerland), 2021-08-04) Fernandes KA; Gee EK; Rogers CW; Kittelmann S; Biggs PJ; Bermingham EN; Bolwell CF; Thomas DG; Costa MSeasonal variation in the faecal microbiota of forage-fed horses was investigated over a 12-month period to determine whether the bacterial diversity fluctuated over time. Horses (n = 10) were maintained on pasture for one year, with hay supplemented from June to October. At monthly intervals, data were recorded on pasture availability and climate (collected continuously and averaged on monthly basis), pasture and hay samples were collected for nutrient analysis, and faecal samples were collected from all horses to investigate the diversity of faecal microbiota using next-generation sequencing on the Illumina MiSeq platform. The alpha diversity of bacterial genera was high in all samples (n = 118), with significantly higher Simpson's (p < 0.001) and Shannon-Wiener (p < 0.001) diversity indices observed during the months when horses were kept exclusively on pasture compared to the months when pasture was supplemented with hay. There were significant effects of diet, season, and month (ANOSIM, p < 0.01 for each comparison) on the beta diversity of bacterial genera identified in the faeces. While there was some inter-horse variation, hierarchical clustering of beta diversity indices showed separate clades originating for samples obtained during May, June, and July (late-autumn to winter period), and January, February, and March (a period of drought), with a strong association between bacterial taxa and specific nutrients (dry matter, protein, and structural carbohydrates) and climate variables (rainfall and temperature). Our study supports the hypothesis that the diversity and community structure of the faecal microbiota of horses kept on pasture varied over a 12-month period, and this variation reflects changes in the nutrient composition of the pasture, which in turn is influenced by climatic conditions. The findings of this study may have implications for grazing management and the preparation of conserved forages for those horses susceptible to perturbations of the hindgut microbiota.
- ItemUsing meta-analysis to understand the impacts of dietary protein and fat content on the composition of fecal microbiota of domestic dogs (Canis lupus familiaris): A pilot study(John Wiley and Sons Ltd, 2024-04) Phimister FD; Anderson RC; Thomas DG; Farquhar MJ; Maclean P; Jauregui R; Young W; Butowski CF; Bermingham ENThe interplay between diet and fecal microbiota composition is garnering increased interest across various host species, including domestic dogs. While the influence of dietary macronutrients and their associated microbial communities have been extensively reviewed, these reviews are descriptive and do not account for differences in microbial community analysis, nor do they standardize macronutrient content across studies. To address this, a meta-analysis was performed to assess the impact of dietary crude protein ("protein") and dietary crude fat ("fat") on the fecal microbiota composition in healthy dogs. Sixteen publications met the eligibility criteria for the meta-analysis, yielding a final data set of 314 dogs. Diets were classed as low, moderate, high, or supra in terms of protein or fat content. Sequence data from each publication were retrieved from public databases and reanalyzed using consistent bioinformatic pipelines. Analysis of community diversity indices and unsupervised clustering of the data with principal coordinate analysis revealed a small effect size and complete overlap between protein and fat levels at the overall community level. Supervised clustering through random forest analysis and partial least squares-discriminant analysis indicated alterations in the fecal microbiota composition at a more individual taxonomic level, corresponding to the levels of protein or fat. The Prevotellaceae Ga6A1 group and Enterococcus were associated with increasing levels of protein, while Allobaculum and Clostridium sensu stricto 13 were associated with increasing levels of fat. Interestingly, the random forest analyses revealed that Sharpea, despite its low relative abundance in the dog's fecal microbiome, was primarily responsible for the separation of the microbiome for both protein and fat. Future research should focus on validating and understanding the functional roles of these relatively low-abundant genera.