Browsing by Author "Benschop J"
Now showing 1 - 20 of 28
Results Per Page
Sort Options
- ItemA cross-sectional investigation of Leptospira at the wildlife-livestock interface in New Zealand(PLOS, 2023-09-06) Moinet M; Oosterhof H; Nisa S; Haack N; Wilkinson DA; Aberdein D; Russell JC; VallĆ©e E; Collins-Emerson J; Heuer C; Benschop J; Stevenson BThere has been a recent upsurge in human cases of leptospirosis in New Zealand, with wildlife a suspected emerging source, but up-to-date knowledge on this topic is lacking. We conducted a cross-sectional study in two farm environments to estimate Leptospira seroprevalence in wildlife and sympatric livestock, PCR/culture prevalence in wildlife, and compare seroprevalence and prevalence between species, sex, and age groups. Traps targeting house mice (Mus musculus), black rats (Rattus rattus), hedgehogs (Erinaceus europaeus) and brushtail possums (Trichosurus vulpecula) were set for 10 trap-nights in March-April 2017 on a dairy (A) and a beef and sheep (B) farm. Trapped wild animals and an age-stratified random sample of domestic animals, namely cattle, sheep and working dogs were blood sampled. Sera were tested by microagglutination test for five serogroups and titres compared using a Proportional Similarity Index (PSI). Wildlife kidneys were sampled for culture and qPCR targeting the lipL32 gene. True prevalence in mice was assessed using occupancy modelling by collating different laboratory results. Infection profiles varied by species, age group and farm. At the MAT cut-point of ā„ 48, up to 78% of wildlife species, and 16-99% of domestic animals were seropositive. Five of nine hedgehogs, 23/105 mice and 1/14 black rats reacted to L. borgpetersenii sv Ballum. The sera of 4/18 possums and 4/9 hedgehogs reacted to L. borgpetersenii sv Hardjobovis whilst 1/18 possums and 1/9 hedgehogs reacted to Tarassovi. In ruminants, seroprevalence for Hardjobovis and Pomona ranged 0-90% and 0-71% depending on the species and age group. Titres against Ballum, Tarassovi and Copenhageni were also observed in 4-20%, 0-25% and 0-21% of domestic species, respectively. The PSI indicated rodents and livestock had the most dissimilar serological responses. Three of nine hedgehogs, 31/105 mice and 2/14 rats were carrying leptospires (PCR and/or culture positive). True prevalence estimated by occupancy modelling in mice was 38% [95% Credible Interval 26, 51%] on Farm A and 22% [11, 40%] on Farm B. In the same environment, exposure to serovars found in wildlife species was commonly detected in livestock. Transmission pathways between and within species should be assessed to help in the development of efficient mitigation strategies against Leptospira.
- ItemCarriage of Extended-Spectrum-Beta-Lactamase- and AmpC Beta-Lactamase-Producing Escherichia coli Strains from Humans and Pets in the Same Households.(American Society for Microbiology, 24/11/2020) Toombs-Ruane LJ; Benschop J; French NP; Biggs PJ; Midwinter AC; Marshall JC; Chan M; DrinkoviÄ D; Fayaz A; Baker MG; Douwes J; Roberts MG; Burgess SAExtended-spectrum-beta-lactamase (ESBL)- or AmpC beta-lactamase (ACBL)-producing Escherichia coli bacteria are the most common cause of community-acquired multidrug-resistant urinary tract infections (UTIs) in New Zealand. The carriage of antimicrobial-resistant bacteria has been found in both people and pets from the same household; thus, the home environment may be a place where antimicrobial-resistant bacteria are shared between humans and pets. In this study, we sought to determine whether members (pets and people) of the households of human index cases with a UTI caused by an ESBL- or ACBL-producing E. coli strain also carried an ESBL- or ACBL-producing Enterobacteriaceae strain and, if so, whether it was a clonal match to the index case clinical strain. Index cases with a community-acquired UTI were recruited based on antimicrobial susceptibility testing of urine isolates. Fecal samples were collected from 18 non-index case people and 36 pets across 27 households. Eleven of the 27 households screened had non-index case household members (8/18 people and 5/36 animals) positive for ESBL- and/or ACBL-producing E. coli strains. Whole-genome sequence analysis of 125 E. coli isolates (including the clinical urine isolates) from these 11 households showed that within seven households, the same strain of ESBL-/ACBL-producing E. coli was cultured from both the index case and another person (5/11 households) or pet dog (2/11 households). These results suggest that transmission within the household may contribute to the community spread of ESBL- or ACBL-producing E. coliIMPORTANCEEnterobacteriaceae that produce extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (ACBLs) are important pathogens and can cause community-acquired illnesses, such as urinary tract infections (UTIs). Fecal carriage of these resistant bacteria by companion animals may pose a risk for transmission to humans. Our work evaluated the sharing of ESBL- and ACBL-producing E. coli isolates between humans and companion animals. We found that in some households, dogs carried the same strain of ESBL-producing E. coli as the household member with a UTI. This suggests that transmission events between humans and animals (or vice versa) are likely occurring within the home environment and, therefore, the community as a whole. This is significant from a health perspective, when considering measures to minimize community transmission, and highlights that in order to manage community spread, we need to consider interventions at the household level.
- ItemDensity matters: How population dynamics of house mice (Mus musculus) inform the epidemiology of Leptospira(John Wiley & Sons Ltd on behalf of British Ecological Society, 2024-07-22) Moinet M; AbrahĆ£o CR; Gasparotto VPO; Wilkinson DA; VallĆ©e E; Benschop J; Russell JC; Elderd B1. Rodents are maintenance hosts of numerous pathogens, and both their density and the pathogen prevalence determine the risk they pose to other animals or humans. However, density is often overlooked. We investigated a capture-mark-recapture-sampling strategy to study introduced mice (Mus musculus) and Leptospira as a model and demonstrate the advantages of a combined approach. 2. We estimated population density and Leptospira prevalence in mice in a replicated longitudinal survey conducted between 2016 and 2018. Capture-mark-recapture sessions were undertaken at two sites in Spring and Autumn and blood and kidney samples were collected at the end of each session. Mouse density and areas of activity were estimated using spatially explicit captureārecapture (SECR) models and both were compared between Leptospira positive and negative mice. Leptospira exposure and shedding status were estimated using Microscopic Agglutination Test, and a combination of culture and lipL32 PCR on kidneys. 3. Leptospira prevalence was higher in spring (83%ā86%) than in autumn (31%ā37%) and mouse densities simultaneously varied from 3.6 to 55.9/ha. However, despite these variations in prevalence and density, the density of infected animals remained relatively constant over time (3ā8/ha). Shedding or being seropositive was also associated with the activity of mice. Shedding or seropositive mice had a larger activity area, and seropositive mice were trapped on average 1 day earlier than seronegative mice. 4. Synthesis and applications: Our results show how understanding the population dynamics of pathogen-carrying rodents is critical in epidemiology. The wider movement patterns and easier encounters of positive mice highlight the possibility of biases in classical prevalence surveys and have implications for disease transmission within and between species. Importantly, and quite counter-intuitively, Leptospira prevalence was negatively associated with mouse density, resulting in a constant density of shedders that contradicts the conventional view of higher exposure risk at high rodent density. More broadly, such sampling designs can improve animal and disease control policies and better inform modelling studies by providing more parameter estimates than classical prevalence surveys.
- ItemDiverse Epidemiology of Leptospira serovars Notified in New Zealand, 1999-2017(MDPI (Basel, Switzerland), 14/10/2020) Nisa S; Wilkinson DA; Angelin-Bonnet O; Paine S; Cullen K; Wight J; Baker MG; Benschop JLeptospirosis in New Zealand has been strongly associated with animal-contact occupations and with serovars Hardjo and Pomona. However, recent data suggest changes in these patterns, hence, serovar-specific epidemiology of leptospirosis from 1999 to 2017 was investigated. The 19-year average annual incidence is 2.01/100,000. Early (1999-2007) and late (2008-2017) study period comparisons showed a significant increase in notifications with serovar Ballum (IRR: 1.59, 95% CI: 1.22-2.09) in all cases and serovar Tarassovi (IRR: 1.75, 95% CI: 1.13-2.78) in Europeans and a decrease in notifications with serovars Hardjo and Pomona in all cases. Incidences of Ballum peaked in winter, Hardjo peaked in spring and Tarassovi peaked in summer. Incidence was highest in MÄori (2.24/100,000) with dominant serovars being Hardjo and Pomona. Stratification by occupation showed meat workers had the highest incidence of Hardjo (57.29/100,000) and Pomona (45.32/100,000), farmers had the highest incidence of Ballum (11.09/100,000) and dairy farmers had the highest incidence of Tarassovi (12.59/100,000). Spatial analysis showed predominance of Hardjo and Pomona in Hawke's Bay, Ballum in West Coast and Northland and Tarassovi in Waikato, Taranaki and Northland. This study highlights the serovar-specific heterogeneity of human leptospirosis in New Zealand that should be considered when developing control and prevention strategies.
- ItemExtended-spectrum Ī²-lactamase- and AmpC Ī²-lactamase-producing Enterobacterales associated with urinary tract infections in the New Zealand community: a case-control study(Elsevier Ltd on behalf of International Society for Infectious Diseases, 2023-03) Toombs-Ruane LJ; Marshall JC; Benschop J; DrinkoviÄ D; Midwinter AC; Biggs PJ; Grange Z; Baker MG; Douwes J; Roberts MG; French NP; Burgess SAOBJECTIVES: To assess whether having a pet in the home is a risk factor for community-acquired urinary tract infections associated with extended-spectrum Ī²-lactamase (ESBL)- or AmpC Ī²-lactamase (ACBL)- producing Enterobacterales. METHODS: An unmatched case-control study was conducted between August 2015 and September 2017. Cases (n = 141) were people with community-acquired urinary tract infection (UTI) caused by ESBL- or ACBL-producing Enterobacterales. Controls (n = 525) were recruited from the community. A telephone questionnaire on pet ownership and other factors was administered, and associations were assessed using logistic regression. RESULTS: Pet ownership was not associated with ESBL- or ACBL-producing Enterobacterales-related human UTIs. A positive association was observed for recent antimicrobial treatment, travel to Asia in the previous year, and a doctor's visit in the last 6 months. Among isolates with an ESBL-/ACBL-producing phenotype, 126/134 (94%) were Escherichia coli, with sequence type 131 being the most common (47/126). CONCLUSIONS: Companion animals in the home were not found to be associated with ESBL- or ACBL-producing Enterobacterales-related community-acquired UTIs in New Zealand. Risk factors included overseas travel, recent antibiotic use, and doctor visits.
- ItemFactors Associated with Medication Noncompliance in Dogs in New Zealand.(MDPI (Basel, Switzerland), 2024-09-03) Odom TF; Riley CB; Benschop J; Hill KE; Paterson MClient compliance with prescribed medication instructions to treat their pets is a concern. This study describes factors associated with the noncompliance of dog owners with veterinary recommendations for medication, as well as client-reported barriers and aids to administering medications. A cross-sectional survey of dog owners' compliance with veterinary medication recommendations was performed from 9 January 2019 to 18 July 2020. A convenience sample of owners who prescribed medication for their dogs during or following elective veterinary examination was surveyed regarding medication administration experience and compliance. Owners were followed up to determine if the course of medication had been completed. Compliance data were analyzed descriptively. Logistic regression was performed with compliance as the outcome. Medication noncompliance was recorded for 47% (71/151) of owners. Increasing dog age was associated with better owner compliance (p < 0.05). Pet owners who used "nothing" as an aid to medicating were less likely to be noncompliant (p < 0.05). Forty-seven percent (71/151) of owners reported that "nobody" showed them how to administer the medication. One-third of dog owners (47/151) reported challenges in medicating their pets. The most common reason cited by clients reporting challenges was a resistant pet. Demonstration of medication administration techniques and discussion about available aids to medicating a pet may improve client compliance.
- ItemFood Safety, Health Management, and Biosecurity Characteristics of Poultry Farms in Arusha City, Northern Tanzania, Along a Gradient of Intensification(East African Health Research Commission of the East African Community, 2019-05-24) Sindiyo E; Maganga R; Thomas KM; Benschop J; Swai E; Shirima G; Zadoks RNBACKGROUND: With the growth, urbanisation, and changing consumption patterns of Tanzania's human population, new livestock production systems are emerging. Intensification of poultry production may result in opportunities and threats for food safety, such as improved awareness of biosecurity or increasing prevalence of foodborne pathogens including nontyphoidal Salmonella or Campylobacter spp. We conducted a semiquantitative analysis of poultry production systems in northern Tanzania, with emphasis on biosecurity, health management practices, and prevalence of foodborne pathogens, to gain insight into potential associations between intensification and food safety. METHODS: Interviews were conducted with managers of 40 poultry farms, with equal representation of 4 production systems (extensive, semi-intensive, or intensive production with indigenous chickens, and broiler farming). Per farm, up to 10 birds (total, 386) were tested for cloacal shedding of nontyphoidal Salmonella, with a subset of farms tested for Campylobacter. Data were analysed using univariate statistics, and results were discussed during feedback workshops with participating farmers and extension officers. RESULTS: Clear differences existed between farm types with regard to implementation of biosecurity and health management practices and use of extension services. By contrast, prevalence of foodborne pathogens (6 of 40 farms or 15% for nontyphoidal Salmonella and 13 of 26 farms or 50% for Campylobacter spp.) was not farm-type specific, indicating that it is driven by other factors. Across farming systems, knowledge and awareness of the presence of antimicrobials in poultry feed and the need to abide by post-treatment withdrawal times were limited, as was access to impartial professional advice regarding treatment. CONCLUSION: Different control measures may be needed to protect poultry health compared to public health, and improvements in information provision may be needed for both.
- ItemFostering the Development of Professionalism in Veterinary Students: Challenges and Implications for Veterinary Professionalism Curricula(MDPI (Basel, Switzerland), 2021-11-01) Gordon S; Gardner D; Weston J; Bolwell C; Benschop J; Parkinson TThe importance of professional skills teaching and assessment within veterinary education has recently been highlighted in the veterinary education literature. This academic discourse follows the acknowledgement by both veterinary employers and graduates themselves that new graduates often lack the professional skills and attitudes needed for success in clinical veterinary practice. Traditionally, veterinary curricula have focused solely on teaching content knowledge and clinical skills; however, veterinary education curricula clearly must also contain dedicated instruction in veterinary professionalism. This must include instruction in communication skills, emotional intelligence, cultural awareness, teamwork abilities, dispute resolution strategies and the awareness that multiple approaches may be required to resolve challenges. It has become unrealistic to expect students to rely on observation and role modelling to foster the development of professionalism. There is a need to incorporate explicit learning activities that reinforce the knowledge, attitudes, values, and behaviours that characterise veterinary professionalism. While role modelling remains a key aspect of the veterinary professionalism learning that takes place through the informal/hidden curriculum, many students have often had more experiences with negative role models than with positive ones. This can lead to the development of a tolerance or normalisation of negative behaviours and a decline in studentsā perceptions of professionalism. This article aims to continue recent conversations on professional skills teaching within veterinary education, define what is meant by veterinary professionalism and consider the plethora of terminology used when trying to establish a definition, highlight those attributes of veterinary professionalism deemed important by veterinary stakeholders for career success and employability, and explore the challenges of incorporating the teaching and assessment of professional traits into veterinary education.
- ItemGenomic adaptations of Campylobacter jejuni to long-term human colonization(BioMed Central Ltd, 2021-12-10) Bloomfield SJ; Midwinter AC; Biggs PJ; French NP; Marshall JC; Hayman DTS; Carter PE; Mather AE; Fayaz A; Thornley C; Kelly DJ; Benschop JBACKGROUND: Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. RESULTS: There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. CONCLUSIONS: This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment.
- ItemGenomic Analysis of Salmonella enterica Serovar Typhimurium DT160 Associated with a 14-Year Outbreak, New Zealand, 1998-2012.(2017-06) Bloomfield SJ; Benschop J; Biggs PJ; Marshall JC; Hayman DTS; Carter PE; Midwinter AC; Mather AE; French NPDuring 1998-2012, an extended outbreak of Salmonella enterica serovar Typhimurium definitive type 160 (DT160) affected >3,000 humans and killed wild birds in New Zealand. However, the relationship between DT160 within these 2 host groups and the origin of the outbreak are unknown. Whole-genome sequencing was used to compare 109 Salmonella Typhimurium DT160 isolates from sources throughout New Zealand. We provide evidence that DT160 was introduced into New Zealand around 1997 and rapidly propagated throughout the country, becoming more genetically diverse over time. The genetic heterogeneity was evenly distributed across multiple predicted functional protein groups, and we found no evidence of host group differentiation between isolates collected from human, poultry, bovid, and wild bird sources, indicating ongoing transmission between these host groups. Our findings demonstrate how a comparative genomic approach can be used to gain insight into outbreaks, disease transmission, and the evolution of a multihost pathogen after a probable point-source introduction.
- ItemIdentification of pathogenic Leptospira species and serovars in New Zealand using metabarcoding.(2021) Wilkinson DA; Edwards M; Benschop J; Nisa SLeptospirosis is a zoonotic disease of global importance. The breadth of Leptospira diversity associated with both human and animal disease poses major logistical challenges to the use of classical diagnostic techniques, and increasingly molecular diagnostic tools are used for their detection. In New Zealand, this has resulted in an increase in positive cases reported nationally that have not been attributed to the infecting serovar or genomospecies. In this study, we used data from all pathogenic Leptospira genomes to identify a partial region of the glmU gene as a suitable locus for the discrimination of the infecting species and serovars of New Zealand-endemic Leptospira. This method can be used in culture and culture-independent scenarios making it flexible for diagnostics in humans, animals, and environmental samples. We explored the use of this locus as a molecular barcoding tool via the Oxford Nanopore Technology (ONT) sequencing platform MinION. Sequences obtained by this method allowed specific identification of Leptospira species in mixed and enriched environmental cultures, however read error inherent in the MinION sequencing system reduced the accuracy of strain/variant identification. Using this approach to characterise Leptospira in enriched environmental cultures, we detected the likely presence of Leptospira genomospecies that have not been reported in New Zealand to date. This included a strain of L. borgpetersenii that has recently been identified in dairy cattle and sequences similar to those of L. mayottensis. L. tipperaryensis, L. dzianensis and L. alstonii.
- ItemInvestigating animals and environments in contact with leptospirosis patients in Aotearoa New Zealand reveals complex exposure pathways.(Taylor and Francis Group, 2025-02-12) Benschop J; Collins-Emerson JM; Vallee E; Prinsen G; Yeung P; Wright J; Littlejohn S; Douwes J; Fayaz A; Marshall JC; Baker MG; Quin T; Nisa SCASE HISTORY: Three human leptospirosis cases from a case-control study were recruited for in-contact animal and environment sampling and Leptospira testing between October 2020 and December 2021. These cases were selected because of regular exposure to livestock, pets, and/or wildlife, and sampling was carried out on their farms or lifestyle blocks (sites A-C), with veterinarians overseeing the process for livestock, and cases collecting environmental and wildlife samples. LABORATORY FINDINGS: Across the three sites, a total of 137 cattle, >ā40 sheep, 28 possums, six dogs, six rats, three pigs and three rabbits were tested. Herd serology results on Site A, a dairy farm, showed infection with Tarassovi and Pomona; urinary shedding showed Leptospira borgpetersenii str. Pacifica. Animals were vaccinated against Hardjo, Pomona and Copenhageni. The farmer was diagnosed with Ballum. On Site B, a beef and sheep farm, serology showed infection with Pomona; animals were not vaccinated, and the farmer was diagnosed with Hardjo. On Site C, cattle were shedding L. borgpetersenii; animals were not vaccinated, and the case's serovar was indeterminate. Six wild animals associated with Sites A and C and one environmental sample from Site A were positive for pathogenic Leptospira by PCR. CONCLUSION: These findings highlight the complexity of potential exposures and the difficulty in identifying infection sources for human cases. This reinforces the need for multiple preventive measures such as animal vaccination, the use of personal protective equipment, pest control, and general awareness of leptospirosis to reduce infection risk in agricultural settings. CLINICAL RELEVANCE: Farms with unvaccinated livestock had Leptospira infections, highlighting the importance of animal vaccination. Infections amongst stock that were vaccinated emphasise the importance of best practice vaccination recommendations and pest control. Abbreviations: MAT: Microscopic agglutination test; PIC: Person in charge; PPE: Personalprotective equipment
- ItemLeptospirosis, melioidosis, and rickettsioses in the vicious circle of neglect.(PLOS, 2025-01-23) Tshokey T; Ko AI; Currie BJ; Munoz-Zanzi C; Goarant C; Paris DH; Dance DAB; Limmathurotsakul D; Birnie E; Bertherat E; Gongal G; Benschop J; Savelkoel J; Stenos J; Saraswati K; Robinson MT; Day NPJ; Graves SR; Belmain SR; Blacksell SD; Wiersinga WJ; Stevenson BThe global priorities in the field of infectious diseases are constantly changing. While emerging viral infections have regularly dominated public health attention, which has only intensified after the COVID-19 pandemic, numerous bacterial diseases have previously caused, and continue to cause, significant morbidity and mortality-deserving equal attention. Three potentially life-threatening endemic bacterial diseases (leptospirosis, melioidosis, and rickettsioses) are a huge public health concern especially in low- and middle-income countries. Despite their continued threat, these diseases do not receive proportionate attention from global health organizations and are not even included on the WHO list of neglected tropical diseases (NTDs). This, in turn, has led to a vicious circle of neglect with continued, yet conceivably preventable, hospitalizations and deaths each year especially in the vulnerable population. This is a call from a group of multi-institutional experts on the urgent need to directly address the circle of neglect and raise support in terms of funding, research, surveillance, diagnostics, and therapeutics to alleviate the burden of these 3 diseases.
- ItemLongitudinal Testing of Leptospira Antibodies in Horses Located near a Leptospirosis Outbreak in Alpacas.(12/08/2022) Bolwell C; Gee E; Adams B; Collins-Emerson J; Scarfe K; Nisa S; Gordon E; Rogers C; Benschop JThe objectives of this study were to determine if horses located near an outbreak of leptospirosis in alpacas had Leptospira titres indicative of a previous or current infection and, if so, to determine the magnitude in change of titres over time. Further, the objective was to determine if horses with high titre results were shedding Leptospira in their urine. Blood samples were collected from twelve horses located on or next to the farm with the outbreak in alpacas, on day zero and at four subsequent time points (two, four, six and nine weeks). The microscopic agglutination test was used to test sera for five serovars endemic in New Zealand: Ballum, Copenhageni, Hardjo, Pomona and Tarassovi. A reciprocal MAT titre cut-off of ā„1:100 was used to determine positive horses. Seven out of twelve horses (58%) were positive to at least one serovar during one of the time points. Two horses recorded titres of ā„1600, one for both Pomona and Copenhageni and the other for Hardjo, and these two horses were both PCR positive for Leptospira in their urine samples. For five out of seven horses, the titres either remained the same or changed by one dilution across the sampling time points. The study confirmed endemic exposure to five endemic Leptospira serovars in New Zealand in a group of horses located near a confirmed leptospirosis outbreak in alpacas.
- ItemMedication compliance by cat owners prescribed treatment for home administration.(Wiley Periodicals LLC on behalf of American College of Veterinary Internal Medicine., 2025-01-11) Odom TF; Riley CB; Benschop J; Hill KEBACKGROUND: Most veterinary literature examining medication compliance has described the phenomenon in dogs. The evidence available regarding factors affecting cat owner medication compliance is limited. OBJECTIVES: Identify and describe factors associated with cat owners' noncompliance with veterinary recommendations for pet medications, as well as client-reported barriers and aids to administering medications prescribed by primary care veterinarians. SUBJECTS: Cat owners presenting their animals for veterinary examination and treatment. METHODS: A cross-sectional survey of cat owners' compliance with veterinary medication recommendations was performed from January 9, 2019, to July 18, 2020. A convenience sample of owners prescribed medication for their pets by veterinarians during or after elective veterinary examination was recruited to respond to questions regarding medication administration experience and compliance. Follow-up was obtained from owners to determine if the course of medication had been completed. Compliance data were analyzed descriptively, and logistic regression was performed. RESULTS: Medication noncompliance was recorded for 39% (26/66) of cat owners. A quarter (16/66) reported challenges in administering medication to their pets; the most commonly cited reason was a resistant pet. Oral administration of antibiotics was significantly associated with noncompliance (Pā=ā.01). Clients with limited pet ownership experience were less likely to be noncompliant (Pā=ā.04). CONCLUSIONS AND CLINICAL IMPORTANCE: Clients' inability to medicate their cats PO may have implications for clinical outcomes and antimicrobial stewardship. Alternatives to direct PO administration of solid-form medications in cats should be considered. Demonstrating administration techniques to all clients may improve compliance and influence clinical outcome.
- ItemMolecular typing of Leptospira spp. in farmed and wild mammals reveals new host-serovar associations in New Zealand.(Taylor and Francis Group, 2024-01-01) Wilkinson DA; Edwards M; Shum C; Moinet M; Anderson NE; Benschop J; Nisa SAIMS: To apply molecular typing to DNA isolated from historical samples to determine Leptospira spp. infecting farmed and wild mammals in New Zealand. MATERIALS AND METHODS: DNA samples used in this study were extracted from urine, serum or kidney samples (or Leptospira spp. cultures isolated from them) collected between 2007 and 2017 from a range of domestic and wildlife mammalian species as part of different research projects at Massey University. Samples were included in the study if they met one of three criteria: samples that tested positive with a lipL32 PCR for pathogenic Leptospira; samples that tested negative by lipL32 PCR but were recorded as positive to PCR for pathogenic Leptospira in the previous studies; or samples that were PCR-negative in all studies but were from animals with positive agglutination titres against serogroup Tarassovi. DNA samples were typed using PCR that targeted either the glmU or gyrB genetic loci. The resulting amplicons were sequenced and typed relative to reference sequences. RESULTS: We identified several associations between mammalian hosts and Leptospira strains/serovars that had not been previously reported in New Zealand. Leptospira borgpetersenii strain Pacifica was found in farmed red deer (Cervus elaphus) samples, L. borgpetersenii serovars Balcanica and Ballum were found in wild red deer samples, Leptospira interrogans serovar Copenhageni was found in stoats (Mustela erminea) and brushtail possums (Trichosurus vulpecula), and L. borgpetersenii was found in a ferret (Mustela putorius furo). Furthermore, we reconfirmed previously described associations including dairy cattle with L. interrogans serovars Copenhageni and Pomona and L. borgpetersenii serovars Ballum, Hardjo type bovis and strain Pacifica, sheep with L. interrogans serovar Pomona and L. borgpetersenii serovar Hardjo type bovis, brushtail possum with L. borgpetersenii serovar Balcanica, farmed deer with L. borgpetersenii serovar Hardjo type bovis and hedgehogs (Erinaceus europaeus) with L. borgpetersenii serovar Ballum. CONCLUSIONS: This study provides an updated summary of host-Leptospira associations in New Zealand and highlights the importance of molecular typing. Furthermore, strain Pacifica, which was first identified as Tarassovi using serological methods in dairy cattle in 2016, has circulated in animal communities since at least 2007 but remained undetected as serology is unable to distinguish the different genotypes. CLINICAL RELEVANCE: To date, leptospirosis in New Zealand has been diagnosed with serological typing, which is deficient in typing all strains in circulation. Molecular methods are necessary to accurately type strains of Leptospira spp. infecting mammals in New Zealand.
- ItemOf Mice, Cattle, and Men: A Review of the Eco-Epidemiology of Leptospira borgpetersenii Serovar Ballum.(20/10/2021) Moinet M; Wilkinson DA; Aberdein D; Russell JC; VallƩe E; Collins-Emerson JM; Heuer C; Benschop JIn New Zealand (NZ), leptospirosis is a mostly occupational zoonosis, with >66% of the recently notified cases being farm or abattoir workers. Livestock species independently maintain Leptospira borgpetersenii serovar Hardjo and L. interrogans serovar Pomona, and both are included in livestock vaccines. The increasing importance in human cases of Ballum, a serovar associated with wildlife, suggests that wildlife may be an overlooked source of infection. Livestock could also act as bridge hosts for humans. Drawing from disease ecology frameworks, we chose five barriers to include in this review based on the hypothesis that cattle act as bridge hosts for Ballum. Using a narrative methodology, we collated published studies pertaining to (a) the distribution and abundance of potential wild maintenance hosts of Ballum, (b) the infection dynamics (prevalence and pathogenesis) in those same hosts, (c) Ballum shedding and survival in the environment, (d) the exposure and competency of cattle as a potential bridge host, and (e) exposure for humans as a target host of Ballum. Mice (Mus musculus), rats (Rattus rattus, R. norvegicus) and hedgehogs (Erinaceus europaeus) were suspected as maintenance hosts of Ballum in NZ in studies conducted in the 1970s-1980s. These introduced species are distributed throughout NZ, and are present on pastures. The role of other wildlife in Ballum (and more broadly Leptospira) transmission remains poorly defined, and has not been thoroughly investigated in NZ. The experimental and natural Ballum infection of cattle suggest a low pathogenicity and the possibility of shedding. The seroprevalence in cattle appears higher in recent serosurveys (3 to 14%) compared with studies from the 1970s (0 to 3%). This review identifies gaps in the knowledge of Ballum, and highlights cattle as a potential spillover host. Further studies are required to ascertain the role that wild and domestic species may play in the eco-epidemiology of Ballum in order to understand its survival in the environment, and to inform control strategies.
- ItemPopulation Structure and Antimicrobial Resistance in Campylobacter jejuni and C. coli Isolated from Humans with Diarrhea and from Poultry, East Africa.(Centers for Disease Control and Prevention, 2024-10) French NP; Thomas KM; Amani NB; Benschop J; Bigogo GM; Cleaveland S; Fayaz A; Hugho EA; Karimuribo ED; Kasagama E; Maganga R; Melubo ML; Midwinter AC; Mmbaga BT; Mosha VV; Mshana FI; Munyua P; Ochieng JB; Rogers L; Sindiyo E; Swai ES; Verani JR; Widdowson M-A; Wilkinson DA; Kazwala RR; Crump JA; Zadoks RNCampylobacteriosis and antimicrobial resistance (AMR) are global public health concerns. Africa is estimated to have the world's highest incidence of campylobacteriosis and a relatively high prevalence of AMR in Campylobacter spp. from humans and animals. Few studies have compared Campylobacter spp. isolated from humans and poultry in Africa using whole-genome sequencing and antimicrobial susceptibility testing. We explored the population structure and AMR of 178 Campylobacter isolates from East Africa, 81 from patients with diarrhea in Kenya and 97 from 56 poultry samples in Tanzania, collected during 2006-2017. Sequence type diversity was high in both poultry and human isolates, with some sequence types in common. The estimated prevalence of multidrug resistance, defined as resistance to >3 antimicrobial classes, was higher in poultry isolates (40.9%, 95% credible interval 23.6%-59.4%) than in human isolates (2.5%, 95% credible interval 0.3%-6.8%), underlining the importance of antimicrobial stewardship in livestock systems.
- ItemPrevalence of human papillomaviruses in the mouths of New Zealand women.(25/09/2015) Lucas-Roxburgh R; Benschop J; Dunowska M; Perrott MAIM: Human papillomavirus (HPV) in the oral cavity has been retrospectively associated with an increased risk of developing HPV-positive head and neck squamous cell carcinoma (HNSCC). The aim of this study was to determine the prevalence of oral HPV infection in a local population of New Zealand women aged 18 to 25 years, including determination of HPV genotypes, and to assess potential risk factors for oral HPV infection using participant questionnaire responses. METHODS: Oral brushings and questionnaire responses were collected from 234 women recruited from sexual health and student health centres. Questions covered age, ethnicity, sexual partners, alcohol consumption and smoking. PGMY primers were used for HPV detection by PCR, and results confirmed by sequencing and the cobasĀ® 4800 HPV system. RESULTS: The prevalence of HPV infection was 3.2% of 216 women (95% CI: 1.6%-6.5%). Samples from two women (0.9%, 95% CI: 0.3%-3.3%) contained oncogenic HPV, and another five (2.3%, 95% CI: 1.0%-5.3%) were positive for HPV 13. No significant associations were found between putative risk factors and the presence of oral HPV infection. CONCLUSION: The prevalence of HPV in the oral cavity of New Zealand woman was comparable to results of other studies, but showed an unusual distribution of HPV types. The comparatively high detection rate of HPV 13 suggests that further work into clinical significance of oral HPV 13 infection is warranted.
- ItemRisk Factors for Hospitalisation amongst Leptospirosis Patients in New Zealand(MDPI (Basel, Switzerland), 2021-12) Sokolova M; Marshall JC; Benschop J; Frean JLeptospirosis is a neglected zoonotic disease that is widespread in tropical and subtropical regions such as Oceania, which includes New Zealand. The incidence rate of leptospirosis in New Zealand remains high in comparison to other high-income countries, with over half of the notified patients hospitalised, and the factors associated with hospitalisation are poorly understood. This study aimed to estimate the risk factors for hospitalisation amongst leptospirosis patients using passive surveillance data: notifications from 1 January 1999 to 31 December 2017 extracted from New Zealand's notifiable disease database. There were 771 hospitalised and 673 non-hospitalised patients. Multivariable logistic regression was used to identify risk factors. The year of notification was significantly and positively associated with hospitalisation, with adjusted (adj.) OR 1.03 (95% CI:1.01-1.05). Occupation was significantly associated with hospitalisation, with the adjusted odds of hospitalisation amongst dairy farmers notified with leptospirosis at adj. OR 1.44 (95% CI: 1.02-2.02) times the adjusted odds of hospitalisation amongst farmers that worked with other livestock. Seropositivity for Leptospira interrogans Copenhageni (adj. OR 5.96, 95% CI: 1.68-21.17) and Pomona (adj. OR 1.14, 95% CI: 0.74-1.74)) was more likely to result in hospitalisation when compared to Leptospira borgpetersenii Ballum (baseline). Seropositivity for Leptospira borgpetersenii Hardjo (adj. OR 0.71, 95% CI: 0.49-1.01) and Tarassovi (adj. OR 0.39, 95% CI: 0.23-0.66) was less likely to result in hospitalisation when compared to Ballum (baseline). All the estimates were additionally adjusted for the effect of sex, age, ethnicity, reported occupational exposure, geographical location, reported season, and deprivation status Although passive surveillance data has limitations we have been able to identify that the New Zealand dairy farming population may benefit from a targeted awareness campaign.