Browsing by Author "Bedford MR"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCalcium Nutrition of Broilers: Current Perspectives and Challenges(MDPI (Basel, Switzerland), 2023-05-09) David LS; Anwar MN; Abdollahi MR; Bedford MR; Ravindran V; Tufarelli VCalcium (Ca) plays an essential role in poultry nutrition as 99% of Ca is located in birds' skeletal system. However, oversupply of Ca rather than deficiency of Ca is the current concern in commercial broiler diets. Calcium is an inexpensive dietary nutrient due to the cheap and abundant availability of limestone, the major Ca source; therefore, little attention was given to the oversupply of Ca in the past. The recent shift in the use of digestible P in broiler feed formulations has necessitated a closer look at digestible Ca, as Ca and P are interrelated in their absorption and postabsorptive utilisation. In this context, data on ileal digestibility of Ca and P in ingredients has been determined. Preliminary data on the digestible Ca and digestible P requirements for the different growth stages of broilers have also recently become available. The present review focusses on these recent advances in Ca nutrition. In addition, aspects of homeostatic control mechanisms, different Ca sources and factors influencing Ca digestibility in poultry are covered.
- ItemRequirement of digestible calcium at different dietary concentrations of digestible phosphorus for broiler chickens 3. Broiler finishers (d 25 to 35 post-hatch)(y Elsevier Inc (USA), on behalf of Poultry Science Association Inc, 2023-04) David LS; Abdollahi MR; Bedford MR; Ravindran VAn experiment was conducted to determine the digestible calcium (Ca) and digestible phosphorous (P) requirements of 25 to 35-day-old broiler chickens. Fifteen corn-soybean meal-based diets containing 2.0, 2.5, 3.0, 3.5, and 4.0 g/kg standardized ileal digestible (SID) Ca and 2.5, 3.5, and 4.5 g/kg SID P were fed to broilers from d 25 to 35 post-hatch. Each experimental diet was randomly allocated to 6 replicate cages (8 birds per cage). Body weight and feed intake were recorded, and the feed conversion ratio was calculated. On d 35, birds were euthanized to collect the ileal digesta, tibia, and carcass for the determination of ileal Ca, and P digestibility, concentrations of ash, Ca, and P in tibia and the retention of Ca and P in the carcass. Titanium dioxide (5.0 g/kg) was included in all diets as an indigestible indicator for the ileal digestibility measurement. Feed intake and total excreta output were measured during the last 4 d of the experimental period for the measurement of apparent total tract retention of Ca and P. Fixed effects of the experiment were dietary concentrations of SID Ca and SID P and their interaction. If the interaction or main effects were significant (P < 0.05), the parameter estimates for second-order response surface model (RSM) were determined using General Linear Model procedure of SAS. The maximum response was not predicted for most of the parameters (including growth performance and tibia) as the Ca effect was linear which indicated that the highest level of Ca employed in the study may have not been high enough. The requirement of dietary SID Ca for maximization of these parameters, therefore, depends on the dietary SID P concentration when the dietary SID Ca is within 2.0 to 4.0 g/kg. However, based on the factorial analysis, the highest weight gain was observed at 3.5 g/kg SID P and 3.5 g/kg SID Ca concentrations. Tibia ash was higher in birds fed 4.5 g/kg SID P and was unaffected by dietary SID Ca concentrations. However, based on overall findings, a combination of 3.5 g/kg SID P and 3.0-3.5 g/kg SID Ca may be recommended for the optimum tibia ash. The recommended SID Ca requirements (at 3.5 g/kg SID P) for weight gain (3.5 g/kg or 6.4 g/kg total Ca) and tibia ash (3.0-3.5 g/kg or 5.5-6.4 g/kg total Ca) are lower than the current Ca recommendations (7.8 g/kg total Ca equivalent to 4.25 g/kg SID Ca; Ross, 2019) for broiler finishers, suggesting possible excess of Ca in diets formulated based on the current recommendation.
- ItemRequirement of digestible calcium at different dietary concentrations of digestible phosphorus for broiler chickens. 2. Broiler growers (d 11 to 24 post-hatch)(Elsevier Inc. on behalf of Poultry Science Association Inc., 2022-11) David LS; Abdollahi MR; Bedford MR; Ravindran VAn experiment was conducted to determine the digestible calcium (Ca) and digestible phosphorous (P) requirements of 11 to 24 d old broiler chickens. Eighteen corn-soybean meal-based diets containing 1.80, 2.35, 2.90, 3.45, 4.00, and 4.55 g/kg standardized ileal digestible (SID) Ca and 3.5, 4.5, and 5.5 g/kg SID P were fed to broilers from d 11 to 24. Each experimental diet was randomly allocated to six replicate cages (8 birds per cage). Body weight and feed amount were recorded at the start and end of the experiment and the feed conversion ratio was calculated. On d 24, birds were euthanized to collect ileal digesta, tibia, and carcass for the determination of digestible Ca and P, the concentration of ash, Ca and P in tibia and the retention of Ca and P in the carcass, respectively. Titanium dioxide (5 g/kg) was included in all diets as an indigestible indicator for apparent ileal digestibility measurement. Total excreta output was measured during the last 4 d of the experimental period for the measurement of apparent total tract retention of Ca and P. Fixed effects of the experiment were dietary concentrations of SID Ca and SID P and their interaction. If the interaction or main effect was significant (P < 0.05), the parameter estimate for second-order response surface model was determined using General Linear Model procedure of SAS. The weight gain of broiler growers was optimized at the SID P concentration of 3.5 g/kg and SID Ca concentrations between 2.35 and 4.00 g/kg. At 3.5 g/kg SID P concentration, the required SID Ca for maximum weight gain was determined to be 3.05 g/kg, which corresponded to SID Ca to SID P ratios of 0.87. The concentration of SID Ca that maximized tibia ash at 3.5 g/kg SID P was 3.69 g/kg, which corresponded to SID Ca to SID P ratio of 1.05. Maximizing bone ash requires more Ca than maximizing weight gain. Carcass Ca and P retention were reflective of total tract Ca and P retention values. The estimated SID Ca requirements (at 3.5 g/kg SID P) for both maximized weight gain (3.05 g/kg or 6.11 g/kg total Ca) and bone ash (3.69 g/kg or 7.28 g/kg total Ca) are lower than the current Ca recommendation (8.70 g/kg total Ca equivalent to 4.03 g/kg SID Ca; Ross, 2019) for broiler growers, indicating possible oversupply of Ca in diets formulated based on the current recommendation.