Browsing by Author "Beaulieu JP"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAn analysis of binary microlensing event OGLE-2015-BLG-0060(Oxford University Press on behalf of the Royal Astronomical Society, 2019-08) Tsapras Y; Cassan A; Ranc C; Bachelet E; Street R; Udalski A; Hundertmark M; Bozza V; Beaulieu JP; Marquette JB; Euteneuer E; Bramich DM; Dominik M; Figuera Jaimes R; Horne K; Mao S; Menzies J; Schmidt R; Snodgrass C; Steele IA; Wambsganss J; Mróz P; Szymański MK; Soszyński I; Skowron J; Pietrukowicz P; Kozłowski S; Poleski R; Ulaczyk K; Pawlak M; Jørgensen UG; Skottfelt J; Popovas A; Ciceri S; Korhonen H; Kuffmeier M; Evans DF; Peixinho N; Hinse TC; Burgdorf MJ; Southworth J; Tronsgaard R; Kerins E; Andersen MI; Rahvar S; Wang Y; Wertz O; Rabus M; Calchi Novati S; D'Ago G; Scarpetta G; Mancini L; Abe F; Asakura Y; Bennett DP; Bhattacharya A; Donachie M; Evans P; Fukui A; Hirao Y; Itow Y; Kawasaki K; Koshimoto N; Li MCA; Ling CH; Masuda K; Matsubara Y; Muraki Y; Miyazaki S; Nagakane M; Ohnishi K; Rattenbury N; Saito T; Sharan A; Shibai H; Sullivan DJ; Sumi T; Suzuki D; Tristram PJ; Yamada T; Yonehara A; The RoboNet team; The OGLE collaboration; The MiNDSTEp collaboration; The MOA collaborationWe present the analysis of stellar binary microlensing event OGLE-2015-BLG-0060 based on observations obtained from 13 different telescopes. Intensive coverage of the anomalous parts of the light curve was achieved by automated follow-up observations from the robotic telescopes of the Las Cumbres Observatory. We show that, for the first time, all main features of an anomalous microlensing event are well covered by follow-up data, allowing us to estimate the physical parameters of the lens. The strong detection of second-order effects in the event light curve necessitates the inclusion of longer-baseline survey data in order to constrain the parallax vector. We find that the event was most likely caused by a stellar binary-lens with masses M = 0.87 pm 0.12 mathrm{M} and M = 0.77 pm 0.11 mathrm{M}. The distance to the lensing system is 6.41 ± 0.14 kpc and the projected separation between the two components is 13.85 ± 0.16 au. Alternative interpretations are also considered.
- ItemConfirmation of Color-dependent Centroid Shift Measured After 1.8 Years with HST(American Astronomical Society, 2023-04-19) Bhattacharya A; Bennett DP; Beaulieu JP; Bond IA; Koshimoto N; Lu JR; Blackman JW; Ranc C; Vandorou A; Terry SK; Marquette JB; Cole AA; Fukui AWe measured the precise masses of the host and planet in the OGLE-2003-BLG-235 system, when the lens and source were resolving, with 2018 Keck high resolution images. This measurement is in agreement with the observation taken in 2005 with the Hubble Space Telescope (HST). In the 2005 data, the lens and sources were not resolved and the measurement was made using color-dependent centroid shift only. The Nancy Grace Roman Space Telescope will measure masses using data typically taken within 3-4 yr of the peak of the event, which is a much shorter baseline when compared to most of the mass measurements to date. Hence, the color-dependent centroid shift will be one of the primary methods of mass measurements for the Roman telescope. Yet, mass measurements of only two events (OGLE-2003-BLG-235 and OGLE-2005-BLG-071) have been done using the color-dependent centroid shift method so far. The accuracy of the measurements using this method are neither completely known nor well studied. The agreement of the Keck and HST results, as shown in this paper, is very important because this agreement confirms the accuracy of the mass measurements determined at a small lens-source separation using the color-dependent centroid shift method. It also shows that with >100 high resolution images, the Roman telescope will be able to use color-dependent centroid shift at a 3-4 yr time baseline and produce mass measurements. We find that OGLE-2003-BLG-235 is a planetary system that consists of a 2.34 ± 0.43M Jup planet orbiting a 0.56 ± 0.06M ⊙ K-dwarf host star at a distance of 5.26 ± 0.71 kpc from the Sun.