Browsing by Author "Au Yeung SL"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemBirth weight and prematurity with lung function at ~17.5 years: "Children of 1997" birth cohort.(Springer Nature Limited, 2020-01-15) He B; Kwok MK; Au Yeung SL; Lin SL; Leung JYY; Hui LL; Li AM; Leung GM; Schooling CMWe aimed to determine if prematurity and lower birth weight are associated with poorer lung function in a non-western developed setting with less marked confounding by socioeconomic position. Using multivariable linear regression in Hong Kong's "Children of 1997" birth cohort, adjusted associations of prematurity and birth weight with forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and forced expiratory flow at 25-75% of the pulmonary volume (FEF25-75%) at ~17.5 years were assessed. Associations for birth weight were stronger in boys for FEV1 (boys: 0.31 L, 95% confidence interval (CI) 0.24 to 0.38, girls: 0.18 L, 95% CI 0.12 to 0.25), FVC (boys: 0.36 L, 95% CI 0.27 to 0.44, girls: 0.22 L, 95% CI 0.15 to 0.28) and FEF25-75% (boys: 0.35 L, 95% CI 0.21 to 0.49, girls: 0.22 L, 95% CI 0.09 to 0.34) adjusted for age, socioeconomic position and infant and maternal characteristics. Similarly adjusted, preterm birth (compared to full-term birth) was associated with lower FEV1/FVC and FEF25-75%. Thus, associations of lower birth weight, especially in boys, and prematurity with poorer lung function at 17.5 years were found. Identifying underlying mechanism might contribute to the improvement of pulmonary health and the prevention of adult respiratory illness.
- ItemThe effect of liver enzymes on adiposity: a Mendelian randomization study.(Springer Nature Limited, 2019-11-14) Liu J; Au Yeung SL; Kwok MK; Leung JYY; Lin SL; Hui LL; Leung GM; Schooling CMPoorer liver function is positively associated with diabetes in Mendelian randomization (MR) studies. Observationally, adiposity is associated with poorer liver function. To clarify the etiology, we assessed the association of liver enzymes with adiposity observationally and using two-sample MR for validation. In the "Children of 1997" birth cohort, we used multivariable linear regression to assess the associations of alanine transaminase (ALT) and alkaline phosphatase (ALP) at ~17.5 years with body mass index (BMI) (n = 3,458). Using MR, genetic predictors of ALT, ALP and gamma glutamyltransferase (GGT), were applied to genome-wide association studies of BMI (n = 681,275), waist circumference (WC) (n = 224,459) and waist-hip ratio (WHR) (n = 224,459) to obtain unconfounded estimates. Observationally, ALT was positively associated with BMI (0.10 kg/m2 per IU/L, 95% confidence interval (CI) 0.09 to 0.11). ALP was inversely associated with BMI (-0.018 kg/m2 per IU/L, 95% CI -0.024 to -0.012). Using MR, ALT was inversely associated with BMI (-0.14 standard deviation per 100% change in concentration, 95% CI -0.20 to -0.07), but not WC or WHR. ALP and GGT were unrelated to adiposity. Poorer liver function might not cause adiposity; instead higher ALT might reduce BMI, raising the question as to the role of ALT in body composition.
- ItemThe effect of liver enzymes on body composition: A Mendelian randomization study.(PLOS, 2020-02-11) Liu J; Au Yeung SL; Kwok MK; Leung JYY; Hui LL; Leung GM; Schooling CM; Meyre DBackground Higher alanine transaminase (ALT), indicating poor liver function, is positively associated with diabetes but inversely associated with body mass index (BMI) in Mendelian randomization (MR) studies, suggesting liver function affects muscle mass. To clarify, we assessed the associations of liver enzymes with muscle and fat mass observationally with two-sample MR as a validation. Methods In the population-representative “Children of 1997” birth cohort (n = 3,455), we used multivariable linear regression to assess the adjusted associations of ALT and alkaline phosphatase (ALP) at ~17.5 years with muscle mass and body fat percentage observationally. Genetic variants predicting ALT, ALP and gamma glutamyltransferase (GGT) were applied to fat-free and fat mass in the UK Biobank (n = ~331,000) to obtain unconfounded MR estimates. Results Observationally, ALT was positively associated with muscle mass (0.11 kg per IU/L, 95% confidence interval (CI) 0.10 to 0.12) and fat percentage (0.15% per IU/L, 95% CI 0.13 to 0.17). ALP was inversely associated with muscle mass (-0.03 kg per IU/L, 95% CI -0.04 to -0.02) and fat percentage (-0.02% per IU/L, 95% CI -0.03 to -0.01). Using MR, ALT was inversely associated with fat-free mass (-0.41 kg per 100% in concentration, 95% CI -0.64 to -0.19) and fat mass (-0.58 kg per 100% in concentration, 95% CI -0.85 to -0.30). ALP and GGT were unclearly associated with fat-free mass or fat mass. Conclusion ALT reducing fat-free mass provides a possible pathway for the positive association of ALT with diabetes and suggests a potential target of intervention.ovides a possible pathway for the positive association of ALT with diabetes and suggests a potential target of intervention.