Browsing by Author "Andrews CJ"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe effect of dietary olive polyphenols on markers of inflammation and bodyweight in senior domestic cats(Wageningen Academic Publishers, 2024-04) Thomas DG; Dyer P; Andrews CJThe high rates of obesity and degenerative joint disease in companion animals has resulted in a demand for dietary supple ments that support joint health and reduce inflammation. Polyphenols have received considerable attention in this space, although literature in companion animals is lacking or conflicting. This study determined whether a diet supplemented with olive polyphenol extract had the potential to reduce inflammation and/or bodyweight. Eight senior domestic cats aged 11.01 ± 0.74 years (mean ± standard error of the mean) and weighing 3.6 ± 0.3 kg (mean ± SEM) were used for this study. The cats were fed, ad libitum with a complete (AAFCO) canned diet supplemented with 0.1% olive polyphenol extract for 56 days. Cats were weighed weekly and blood samples taken on day 0 (baseline), 28, and 56 of the study. Biochemistry, haematology, and cytokine (19 cytokines or chemokines) panels were run for each blood sample. While there was an initial aversion to the supplemented diet, intakes of the cats increased, and they consumed enough to meet or exceed their daily maintenance energy requirements by day 10 of the trial. On average, the cats lost approximately 8% of their starting weight over the trial, which was interesting given that feed intake exceeding maintenance energy requirements for most of the study. Whether the decrease in bodyweight was due to seasonal changes, the supplemented diet, or a combination of the two warrants further investigation. There were little to no changes to any of the blood parameters, which was surprising given that previous studies have reported reductions in pro-inflammatory cytokines following polyphenol supplementation. Perhaps a higher concentration of olive polyphenols is required to elicit the anti-inflammatory response observed in other species. A study evaluating the dose-dependent effects of dietary polyphenols on inflammatory and oxidative markers in cats would be valuable in this context.
- ItemThe Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats (Felis catus): A Validation Study(MDPI (Basel, Switzerland), 2023-08-14) Smit M; Ikurior SJ; Corner-Thomas RA; Andrews CJ; Draganova I; Thomas DG; Vanwanseele BAnimal behaviour can be an indicator of health and welfare. Monitoring behaviour through visual observation is labour-intensive and there is a risk of missing infrequent behaviours. Twelve healthy domestic shorthair cats were fitted with triaxial accelerometers mounted on a collar and harness. Over seven days, accelerometer and video footage were collected simultaneously. Identifier variables (n = 32) were calculated from the accelerometer data and summarized into 1 s epochs. Twenty-four behaviours were annotated from the video recordings and aligned with the summarised accelerometer data. Models were created using random forest (RF) and supervised self-organizing map (SOM) machine learning techniques for each mounting location. Multiple modelling rounds were run to select and merge behaviours based on performance values. All models were then tested on a validation accelerometer dataset from the same twelve cats to identify behaviours. The frequency of behaviours was calculated and compared using Dirichlet regression. Despite the SOM models having higher Kappa (>95%) and overall accuracy (>95%) compared with the RF models (64-76% and 70-86%, respectively), the RF models predicted behaviours more consistently between mounting locations. These results indicate that triaxial accelerometers can identify cat specific behaviours.