Browsing by Author "Albery GF"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemThe coevolutionary mosaic of bat betacoronavirus emergence risk(Oxford University Press, 2024) Forero-Muñoz NR; Muylaert RL; Seifert SN; Albery GF; Becker DJ; Carlson CJ; Poisot TPathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and - most importantly - hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.
- ItemThe future of zoonotic risk prediction(The Royal Society, 2021-11-08) Carlson CJ; Farrell MJ; Grange Z; Han BA; Mollentze N; Phelan AL; Rasmussen AL; Albery GF; Bett B; Brett-Major DM; Cohen LE; Dallas T; Eskew EA; Fagre AC; Forbes KM; Gibb R; Halabi S; Hammer CC; Katz R; Kindrachuk J; Muylaert RL; Nutter FB; Ogola J; Olival KJ; Rourke M; Ryan SJ; Ross N; Seifert SN; Sironen T; Standley CJ; Taylor K; Venter M; Webala PWIn the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges?
- ItemThe Global Virome in One Network (VIRION): an Atlas of Vertebrate-Virus Associations(American Society for Microbiology, 2022-04-26) Carlson CJ; Gibb RJ; Albery GF; Brierley L; Connor RP; Dallas TA; Eskew EA; Fagre AC; Farrell MJ; Frank HK; Muylaert RL; Poisot T; Rasmussen AL; Ryan SJ; Seifert SN; Pickett BE; Jurado KData that catalogue viral diversity on Earth have been fragmented across sources, disciplines, formats, and various degrees of open sharing, posing challenges for research on macroecology, evolution, and public health. Here, we solve this problem by establishing a dynamically maintained database of vertebrate-virus associations, called The Global Virome in One Network (VIRION). The VIRION database has been assembled through both reconciliation of static data sets and integration of dynamically updated databases. These data sources are all harmonized against one taxonomic backbone, including metadata on host and virus taxonomic validity and higher classification; additional metadata on sampling methodology and evidence strength are also available in a harmonized format. In total, the VIRION database is the largest open-source, open-access database of its kind, with roughly half a million unique records that include 9,521 resolved virus "species" (of which 1,661 are ICTV ratified), 3,692 resolved vertebrate host species, and 23,147 unique interactions between taxonomically valid organisms. Together, these data cover roughly a quarter of mammal diversity, a 10th of bird diversity, and ∼6% of the estimated total diversity of vertebrates, and a much larger proportion of their virome than any previous database. We show how these data can be used to test hypotheses about microbiology, ecology, and evolution and make suggestions for best practices that address the unique mix of evidence that coexists in these data. IMPORTANCE Animals and their viruses are connected by a sprawling, tangled network of species interactions. Data on the host-virus network are available from several sources, which use different naming conventions and often report metadata in different levels of detail. VIRION is a new database that combines several of these existing data sources, reconciles taxonomy to a single consistent backbone, and reports metadata in a format designed by and for virologists. Researchers can use VIRION to easily answer questions like "Can any fish viruses infect humans?" or "Which bats host coronaviruses?" or to build more advanced predictive models, making it an unprecedented step toward a full inventory of the global virome.