(Massey University, 2004) Chandrashekar, Adiga; Cooper, Shaun; Han, Jung Hun
Let = ( 1, · · · , m) be a partition of k. Let r (n) denote the number of solutions in
integers of 1x21
+ · · · + mx2
m = n, and let t (n) denote the number of solutions in non
negative integers of 1x1(x1 +1)/2+· · ·+ mxm(xm +1)/2 = n. We prove that if 1 k 7,
then there is a constant c , depending only on , such that r (8n + k) = c t (n), for all
integers n.