GeoScience - A working paper series in physical geography
Permanent URI for this collection
Browse
Browsing GeoScience - A working paper series in physical geography by Author "Fuller, Ian C"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemQuantification of channel planform change on the lower Rangitikei River, New Zealand, 1949-2007: response to management?(2010-09-06T21:16:59Z) Richardson, Jane M.; Fuller, Ian CThe Rangitikei River, a large gravel‐bed wandering river located in the North Island of New Zealand, has outstanding scenic characteristics, recreational, fisheries and wildlife habitat features. Recently concerns have been raised over the potential negative impact that perceived channel changes in the latter part of the 20th century may be having on the Rangitikei River recreational fishery. This study describes and quantifies the large‐scale morphological changes that have occurred in selected reaches of the lower Rangitikei River between 1949 and 2007. This research utilised historical aerial photography and analysis in ArcGIS® to quantify channel planform change in three reaches, encompassing ~18 km of the lower Rangitikei River. This showed that the lower Rangitikei was transformed from a multi‐channelled planform to a predominantly single‐thread wandering planform, with an associated reduction in morphological complexity and active channel width of up to 74%, between 1949 and 2007. Bank protection measures instigated under the Rangitikei River Scheme have primarily driven these changes. Gravel extraction has also contributed by enhancing channel‐floodplain disconnection and exacerbating sediment deficits. The findings of this study have implications for future management of the Rangitikei. Previous lower Rangitikei River management schemes have taken a reach‐based engineering approach with a focus on bank erosion protection and flood mitigation. This study has confirmed the lower river has responded geomorphologically to these goals of river control. However questions as to the economic and ecological sustainability of this management style may encourage river managers to consider the benefits of promoting a self‐adjusting fluvial system within a catchment‐framed management approach.
- ItemQuantifying slope-channel coupling in an active gully and fan complex at Tarndale, Waipaoa catchment, New Zealand(2010-11-18T20:34:46Z) Fuller, Ian C; Dean, Josh F; Phillips, Emma; Massey, Chris; Marden, MikeTwo RIEGL LMS‐Z420i scanner surveys (November 2007 and November 2008) of the Tarndale Gully complex and its associated fan were used to generate a digital elevation model (DEM) of difference in order to quantify gully‐fan‐channel connectivity. The Te Weraroa Stream, into which the first order Tarndale system feeds, is buffered from sediment generated by the gully complex by a fan. Sediment yields and the role of the fan in buffering Te Weraroa Stream are inferred from the TLS of the entire complex. DEM analysis suggests that c.25% of material derived from the gully is buffered from the stream by being stored in the fan. This figure was applied to fan behaviour since December 2004, mapped on nine successive occasions using detailed GPS surveys to get a longer‐term picture of sediment supply within the system and appraise a qualitative assessment of connectivity constructed on the basis of fan behaviour alone.
- ItemShallow landsliding and catchment connectivity within the Houpoto Forest, New Zealand.(Massey University, 2013) McCabe, Michelle; Fuller, Ian C; McColl, Sam TActive landslides and their contribution to catchment connectivity have been investigated within the Houpoto Forest, North Island, New Zealand. The aim was to quantify the proportion of buffered versus coupled landslides and explore how specific physical conditions influenced differences in landslide connectivity. Landsliding and land use changes between 2007 and 2010 were identified and mapped from aerial photography, and the preliminary analyses and interpretations of these data are presented here. The data indicate that forest harvesting made some slopes more susceptible to failure, and consequently many landslides were triggered during subsequent heavy rainfall events. Failures were particularly widespread during two high magnitude (> 200 mm/day) rainfall events, as recorded in 2010 imagery. Connectivity was analysed by quantifying the relative areal extents of coupled and buffered landslides identified in the different images. Approximately 10 % of the landslides were identified as being coupled to the local stream network, and thus directly contributing to the sediment budget. Following liberation of landslides during high-magnitude events, low-magnitude events are thought to be capable of transferring more of this sediment to the channel. Subsequent re-planting of the slopes appears to have helped recovery by increasing the thresholds for failure, thus reducing the number of landslides during subsequent high-magnitude rainfall events. Associated with this is a reduction in slope-channel connectivity. These preliminary results highlight how site specific preconditioning, preparatory and triggering factors contribute to landslide distribution and connectivity, in addition to how efficient re-afforestation improves the rate of slope recovery.